

<u>HL7026</u>

3A I²C Controlled USB/Adapter Li-ion Battery Charger with Power Path and 2.1A OTG Boost

Features

- 20V Input Voltage Tolerance, 3.9V–7V Operating Voltage Range
- High Efficiency 3A Switch Mode Charger
- USB-Compliant/Adapter Charger
 - USB1.0/2.0/3.0 Compliant Input Current Limit
 - 0.1-3A Programmable Input Current Limit
- Autonomous Preconditioning/CC/CV Charge Control, Termination and Recharge
- 1.5MHz Synchronous PWM Converter for Small 1uH Inductor
- USB OTG Boost Programmable Vout: 4.55 V 5.51 V
 - Max lout: 2.1A@4.55-5.51V
- 90% Efficiency at 1.5A
- Hiccup Mode Over-Current Protection for Reliable Capacitive Load Start-up
- Power Path Management
 - Instant System On with No Battery or Deeply Discharged Battery
- Ideal Diode Operation in Battery Assistant Mode
- Full Range Programmable Charge Parameter through I²C Compatible Interface
- Accuracy (0°~125°C)
 - ±1% Charge Voltage Regulation
 - ±10% Charge Current Regulation
 - ±15% Input Current Regulation
 - ±2% Output Regulation in Boost Mode
- High Integration
- Dynamic Power Path Management
- Synchronous Switching MOSFET
- Integrated Current Sensing
- Bootstrap Diode

- Internal Loop Compensation
- Comprehensive Protection
- Safety Timer with Reset Control
- Thermal Regulation and Shutdown
- Input &Output Over-Voltage Protection
- Output Over Current Protection
- Reverse Battery Leakage Protection
- Charge Status Output for LED or Host Processor
- Shipping Mode and Low Battery Leakage Current
- 4mm X 4mm QFN-24 Package

Applications

- Tablet PC
- ♦ Smart Phone
- Power Bank
- Portable Media Player

Order Information

I ² C Address	6BH
USB Detection	PSEL
Default Battery Voltage	4.208V
Default Charge Current	2.048A
Max Charge Current	3A
Max Pre-charge Current	2.048A
OTG Current (Max)	2.1A
Charging Temperature Profile	Cold/Hot, 2TS pins
Status Output	STAT, PGN
STAT during Fault	Blinking@1Hz
Package	4mm X 4mm QFN-24
Packing Method	Tape & Reel
conildent	

Typical Application Diagram

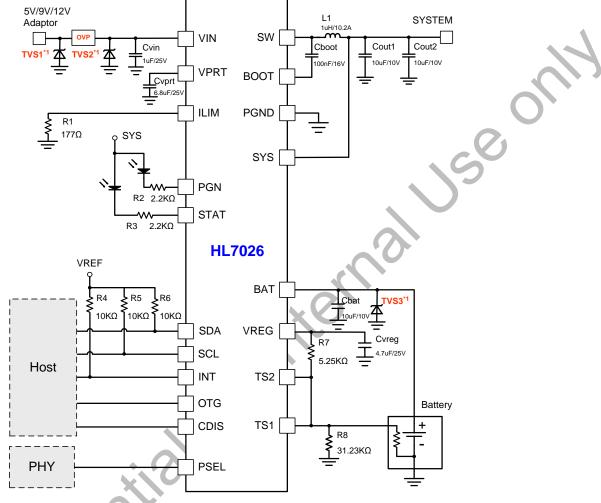


Figure 1 HL7026 Typical Application Diagram

Notice

*1. Careful board level surge protection using TVS diode and OVP device on VIN pin, and TVS diode on VBAT pin, is essential to withstand high voltage spikes that may appear in PCB manufacturing process or end user applications. Without such protection, the IC is prone to electrical over-stress damage.

Component	Part Number	Value	Size	Vendor
L1	IHLP2020ABER1R0M01	1µH/10.2A	-	VISHAY
Cvin	CGA5L2X7R1E105K160AD	1µF/25V	1206	TDK
Cvprt	C3225X5R1E685K	6.8µF/25V	1210	TDK
Cboot	C0603X5R1C104K	100nF/16V	0603	TDK
Cvreg	C1206C475K3PACTU	4.7µF/25V	1206	KEMET
Cbat,Cout1,Cout2	C0805C106K8PACTU	10µF/10V	0805	KEMET
R1	-	177Ω	-	-
R2, R3	-	2.2kΩ	-	-

-	10kΩ	-	-			
-	5.25kΩ	-	-			
-	31.23kΩ	-	-			
See Table2	-	-	Will SEMI			
See Table3	-	-	Will SEMI			
Table 1 Recommended Component list						
	- See Table2 See Table3	- 5.25kΩ - 31.23kΩ See Table2 - See Table3 -	- 5.25kΩ - - 31.23kΩ - See Table2 - - See Table3 - -			

Component	Package tp=8/20		Part Number	Vrwm (V)	V _F (V) I _F =20Ma		IR(µA)	VBR (V)		
		μs	Number	Max	Min	Max	Max	Min	Тур	Max
TVS1	DFN2×2-3L	4000	ESD564 1D12	12.0	0.45	1.25	0.1	13.0	15.0	17.0
TVS2	DFN2×2-3L	4000	ESD564 1D07	7.5	0.45	1.25	1.0	8.0	9.0	10.0
TVS3	DFN2×2-3L	3500	ESD5616 1D04	4.5	0.50	1.10	8.0	5.1	5.7	6.3

Table 2 Recommended TVS

Component	Part Number			Component Dimensions(mm)			
Component		VIN(MAX)	RON	Package	L	W	н
OVP	WS3210C68	30V	45mΩ	WLCSP-9B	1.400	1.400	0.586
	¢.06	Table 3	Recommend	ied OVP			
	- 0011						

<u>HL7026</u>

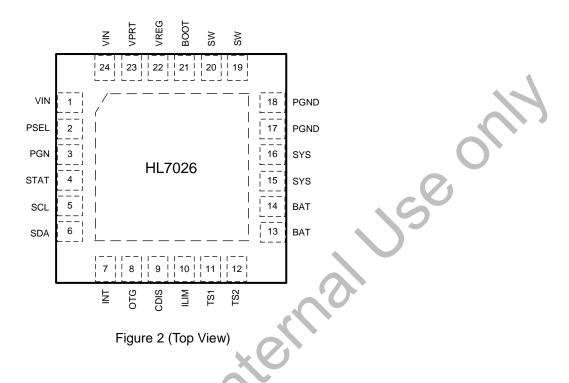
Description

HL7026 is a fully integrated switch-mode Li-ion battery charger with power MOSFET, power path management, I²C interface and USB On-The-Go (OTG) boost function. It can be used with single cell or multiple-cell in parallel Li-ion and Li-polymer batteries in a wide range of smart phones, tablets, power banks and other portable devices. Its switch-mode operation and low-resistance power path maximize charging, discharging and boost efficiency, reduce battery charging time and extend battery life during the discharging phase.

This device supports a wide range of input sources, including standard USB host port, USB charging port and high power AC-DC adapter. It supports an input operating voltage from 3.9V to 13.2V, and can power up the system rail without a battery. It can automatically adjust to the maximum power output of the input source via the input dynamic power management control (INDPM).

HL7026 manages the complete charging cycle of a Li-ion battery autonomously with or without the presence of an I²C host. It detects the battery voltage and automatically charges the battery in four phases: trickle charge, pre-conditioning, constant current and constant voltage. It automatically terminates charging when the battery is full, and restarts a charging cycle if the battery voltage falls below the recharge threshold. For a short circuit protected battery, it can reactivate the battery by providing a float voltage to the battery terminal before charging starts. Its I²C interface provides maximum programmability for charging parameters and system level communication. When the I²C host is not present, a built in watchdog timer stops charging after the timer expires to assure safety battery operation.

A built in low-resistance power path management system enables instant power-up of the system rail when an input source is plugged in, even with a shorted battery or no battery. When a valid battery is present, it provides battery assistant mode during charging when the system load exceeds the capacity of the input source.


The USB OTG boost function provides a programmable 4.55V~5.51V boost output at VIN port from the battery, and supports current up to 2.1A.

HL7026 integrates comprehensive protections mechanism to ensure safe operation of the battery, including battery temperature monitoring via negative temperature coefficient (NTC) thermistor, charging safety timer, overvoltage and under-voltage detection. The device also provides output over-current protection, and regulates its on-chip junction temperature (T_{J_REG}) to be no more than 120°C by regulating its charging current.

HL7026 is available in a 24-pin 4mm x 4mm QFN package.

Pin Diagram

Pin Description

Pin No.	Pin Name	Description
		Charger Input Voltage. The internal reverse-block MOSFET (PROTFET) is connected
1, 24	VIN	between VIN and VPRT. Place a $1\mu F$ ceramic capacitor from VIN to PGND and place it as
		close as possible to IC.
2	PSEL	Power source selection input. High indicates a USB host source and Low indicates an
2	PSEL	adapter source.
		Open drain active low power good indicator. Connect to the pull up rail via 10kohm resistor.
3	PGN	LOW indicates a good input source if the input voltage is between UVLO and $V_{\text{VIN}_\text{OV}},$ above
		SLEEP mode threshold, and current limit is above 30mA.
		Open drain charge status output to indicate various charger operation. Connect to the pull
4	STAT	up rail via 10kohm. LOW indicates charge in progress. HIGH indicates charge complete or
	\mathbf{C}	charge disabled. When any fault condition occurs, STAT pin blinks at 1Hz.
5	SCL	I^2C interface serial clock. Connect SCL to 1.8V rail through a $10k\Omega$ pull-up resistor.
6	SDA	I^2C interface serial data. Connect SDA to 1.8V rail through a 10k Ω pull-up resistor.
	INT	Open-drain Interrupt Output. Connect the INT to a logic rail via $10k\Omega$ resistor. The INT pin
NO.		sends active low, 256us pulse to host to report charger device status and fault.
		USB current limit selection pin during buck mode, and active high enable pin during boost
8	отд	mode. In buck mode with USB host, when OTG = High, $I_{IN} LIM = 500 mA$ and when OTG =
o		Low, I _{IN} LIM= 100mA.The boost mode is activated when REG01[5:4]=10 and OTG pin is
		High.

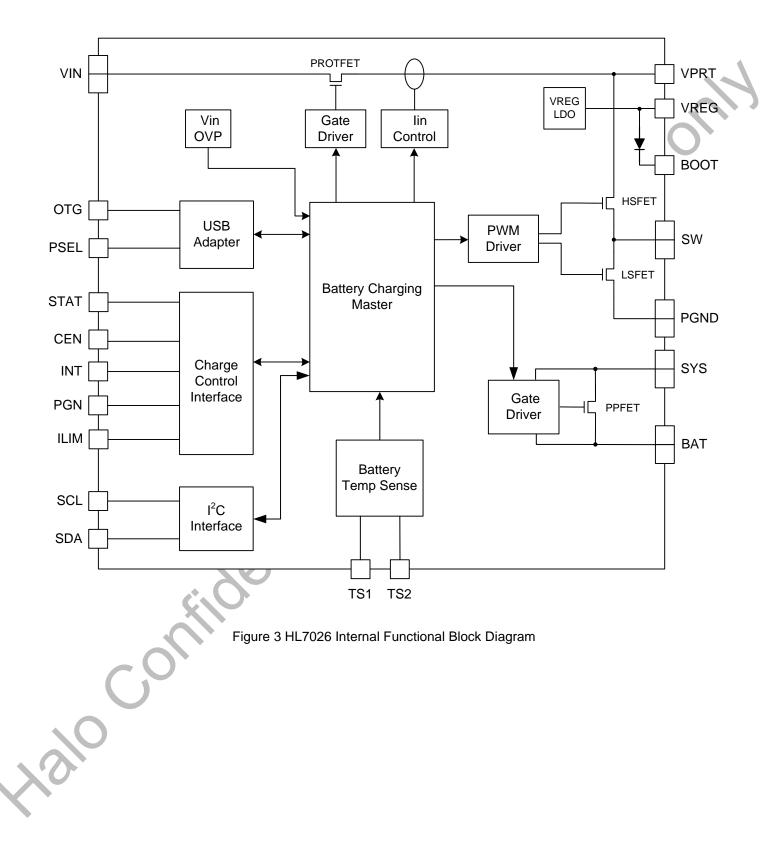

	0	CDIS	CDIS Charge Disable Pin. Battery charging is enabled when REG01[5:4]=01 and CDIS pin
	9	CDIS	= Low. CDIS pin must be pulled high or low.
			ILIM pin sets the maximum input current limit via an external resistor to PGND. A resistor is
	40	ILIM	connected from ILIM pin to ground to set the maximum limit as $ILIM_{MAX} = (1V/R1) \times K_{ILIM}$.
	10		The actual input current limit is the lower one set by ILIM and by REG00[2:0]. The minimum
			input current programmed on ILIM pin is 500mA.
			Temperature qualification voltage input. Connect a negative temperature coefficient
	11	TS1	thermistor. Program temperature window with a resistor divider from VREG to TS1 to
			PGND. Charge suspends when TS1 pin is out of range. Recommend 103AT-2 thermistor.
			Temperature qualification voltage input. Connect a negative temperature coefficient
	12	TS2	thermistor. Program temperature window with a resistor divider from VREG to TS2 to
			PGND. Charge suspends when TS2 pin is out of range. Recommend 103AT-2 thermistor.
	12 14	BAT	Battery connection point to the positive terminal of the battery pack. The internal PPFET is
	13, 14	DAI	connected between BAT and SYS. Connect a 10uF capacitor closely to the BAT pin.
			System connection point. The internal PPFET is connected between BAT and SYS. When
	15, 16	SYS	the battery falls below the minimum system voltage, switch-mode converter keeps SYS
			above the minimum system voltage.
			Power ground connection for high-current power converter node. Internally, PGND is
	17, 18	PGND	connected to the low-side MOSFET. On PCB layout, connect directly to ground connection
	17, 10	FOND	of input and output capacitors of the charger. A single point connection is recommended
			between power ground and the analog ground near the IC PGND pin.
			Switching node connecting to output inductor. Internally SW is connected to the high-side
	19, 20	SW	MOSFET (HSFET) and the low-side MOSFET (LSFET). Connect the 100nF bootstrap
			capacitor from SW to BOOT.
	21	воот	PWM high side driver positive supply. Internally, the BOOT is connected to the anode of the
	21	5001	bootstrap diode. Connect the 100nF bootstrap capacitor from SW to BOOT.
			PWM low side driver positive supply output. Internally, VREG is connected to the anode of
	22	VREG	the boost-strap diode. Connect a 4.7 μ F (10V rating) ceramic capacitor from VREG to
	~~	TRES	analog ground. The capacitor should be placed close to the IC. VREG also serves as bias
		\bigcirc	rail of TS1/TS2 pins.
	23	VPRT	Battery Boost Mode Output Voltage. Connected to the reverse blocking MOSFET
	23	VIKI	(PROTFET) and the high-side MOSFET (HSFET).
•			There is internal electrical connection between the exposed thermal pad and the ground of
		Thermal	the IC. The thermal pad must be connected to the same potential as the GND on the printed
	-	Pad	circuit board. Do not use the thermal pad as the primary ground input to the device. PGND
			terminals must be connected to ground at all times.
-			Table 4 HI 7026 Pin Description

Table 4 HL7026 Pin Description

Internal Functional Block Diagram

Absolute Maximum Ratings⁽¹⁾

		VALUE
	VIN	–1.4 V ~ 20 V
	VPRT	–0.3 V ~ 20 V
	STAT, PGN	-0.3 V ~ 20 V
	BOOT	-0.3 V ~ 20 V
Voltage range (with respect to CND)	SW	-0.3 V ~ 20 V
Voltage range (with respect to GND)	BAT, SYS (converter not switching)	-0.3 V ~ 5.5 V
	SDA, SCL, INT, OTG, ILIM, VREG, TS1, TS2, CDIS,	
	PSEL	–0.3 V ~ 5.5 V
	BOOT to SW	–0.3 V ~ 5.5 V
	PGND to GND	–0.3 V ~ 0.3 V
Output sink current	INT, STAT, PGN	6mA
Junction-to-ambient thermal resistance	ALθ	34 °C/W
Junction-to-case thermal resistance	θ _{JC}	3 °C/W
Junction temperature	L	–40°C to 150°C
Storage temperature	Tstg	–65°C to 150°C
Pin soldering temperature	T _s (10s)	260°C
ESD	НВМ	1000V
ESD	CDM	250V

Recommended Operating Conditions⁽²⁾

		MIN	MAX	UNIT
V_{VIN}	Input voltage	3.9	7	V
Ivin	Input current		3	Α
Isys	Output current (SYS)		4.5	Α
V_{BAT}	Battery voltage		4.4	V
	Fast charging current		4.5	А
			6A continuous	
Іват	Discharging ourrent with internal MOSEET (DDEET)		9A peak	А
	Discharging current with internal MOSFET (PPFET)		(up to 1 second	A
\mathbf{X}^{\prime}			duration)	
TA	Operating free-air temperature range	-40	85	°C

C

JSE

ternal

Note

(1) Stress beyond those listed under absolute maximum ratings may cause permanent damage to the device.

confidential for h

(2) Functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied, exposure to absolute maximum rated conditions of extended periods may affect device reliability. All voltage values are with respect to the normal operation ambient temperature range is from -40°C to +85°C unless otherwise noted.

Electrical Specifications

 $V_{VIN} = -40^{\circ} \text{C} - -125^{\circ} \text{C} \text{ and } T_J = 25^{\circ} \text{C} \text{ for typical values unless other noted.}$

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Quiescent Cu	rrents		1	•		
		$V_{VIN} < V_{UVLO}$, $V_{BAT} = 4.2$ V, leakage between BAT and VIN			5	uA
IBAT Battery discharge current	Battery discharge current	High-Z Mode, or no VIN, PPFET disabled (REG07[5] = 1)		9	20	uA
	High-Z Mode, or no VIN, REG07[5] = 0, -40°C - 85°C		22	55	uA	
		$V_{VIN} = 5 V$, High-Z mode		22	30	uA
Ivin	Input supply current(VIN)	V _{VIN} = 12V, High-Z mode	0	32		uA
		Vvin > Vuvlo, Vvin > VBAT, converter switching, VIN=5V, VBAT=3.8V, Isys=0A		17		mA
I _{BOOST}	Battery discharge current in boost mode	V _{BAT} =4.2V, Boost mode, I _{VPRT} = 0A, converter switching		7		mA
VIN/BAT Powe	er Up					
VVIN_OP	VIN operating range	60	3.9		7	V
V _{VIN_UVLO}	VIN for active I ² C, no battery	V _{VIN} rising	3.6	3.9		V
VSLEEP	Sleep mode falling threshold	VVIN falling, VVIN-VBAT	14	28	56	mV
V _{SLEEPZ}	Sleep mode rising threshold	VVIN rising, VVIN-VBAT	20	39	78	mV
Vvin_ov	VIN over-voltage rising threshold	V _{VIN} rising		7.1		V
Vovr-hyst	VIN over-voltage falling Hysteresis	Vviℕ falling		245		mV
V _{BAT_UVLO}	Battery for active I ² C, no VIN	V _{BAT} rising	2.3			V
VBAT_DPL	Battery depletion threshold	V _{BAT} falling		2.4	2.6	V
Vbat_dpl_hy	Battery depletion rising hysteresis	VBAT rising		200		mV
VVINMIN	Bad adapter detection threshold	V _{VIN} falling		3.9		V
IBADSRC	Bad adapter detection current source			50		mA
Power Path M	anagement	l	1	1	1	<u>I</u>
Vsys_range	System regulation voltage	Isys = 0A, Q4 off, V _{BAT} up to 4.2 V, REG01[3:1]=101, V _{SYSMIN} = 3.5 V	3.5		4.544	v
Vsys_min	System voltage output	REG01[3:1]=101,	3.55	3.65		V

		V _{SYSMIN} = 3.5 V				
Ron_protfet	Internal top reverse blocking MOSFET on-resistance	Measured between VIN and VPRT		38		mΩ
	Internal high-side switching	$T_{J} = -40^{\circ}C - 85^{\circ}C$		38		mΩ
Ron_hsfet	MOSFET on-resistance between VPRT and SW	T _J = -40°C – 125°C		38		mΩ
	Internal low-side switching	$T_{J} = -40^{\circ}C - 85^{\circ}C$		34		mΩ
R _{ON_LSFET}	MOSFET on-resistance between SW and PGND	T _J = -40°C – 125°C		34	5	mΩ
V _{FWD}	PPFET forward voltage in supplement mode	BAT discharge current 10mA		30		mV
Vsys_bat	SYS/BAT Comparator	Vsys falling		35		mV
V _{BATGD}	Battery good comparator rising threshold	V _{BAT} rising	0	3.65		V
Vbatgd_hyst	Battery good comparator falling threshold	VBAT falling		100		mV
Battery Charger						
Vbat_reg_acc	Charge voltage regulation accuracy	V _{BAT} = 4.208V	-0.5		0.5	%
IICHG_REG_ACC	Fast charge current regulation accuracy	V _{BAT} = 3.8V, I _{CHG} = 1792mA, T _J = -20°C - 125°C	-10		10	%
ICHG_20pct	Charge current with 20% option on	V _{BAT} = 2.8V, I _{CHG} = 104mA, REG02=03	75		175	mA
VBATLOWV	Battery LOWV falling threshold	Quick charge to pre-charge, REG04[1] = 1	2.6	2.8	2.9	V
VBATLOWV_HYST	Battery LOWV rising threshold	Pre-charge to quick charge, REG04[1] = 1	2.8	3.0	3.1	V
Iprechg_acc	Pre-charge current regulation accuracy	V _{BAT} = 2.6V, I _{CHG} = 256mA	-20		20	%
Iterm_acc	Termination current accuracy	$I_{\text{TERM}} = 256 \text{mA}, I_{\text{CHG}} = 2048 \text{mA}$	-20		20	%
Vshort	Battery short voltage	V _{BAT} falling		1.85		V
Vshort_hyst	Battery short voltage hysteresis	VBAT rising		200		mV
Ishort	Battery short current	VBAT<2.2V		100		mA
VRECHG	Recharge threshold below V _{BAT_REG}	V _{BAT} falling, REG04[0] = 0		100		mV

一石初				HL	.70	<u>26</u>
trechg	Recharge deglitch time	VBAT falling, REG04[0]=0		32		ms
	SYS-BAT MOSFET	T _J = 25°C		17		mΩ
Ron_ppfet	on-resistance	$T_J = -40^{\circ}C - 125^{\circ}C$		17		mΩ
Input Voltage/Cu	urrent Regulation					
VINDPM_REG_ACC	Input voltage regulation accuracy		-2		2	%
		USB100	85	97	100	mA
	USB Input current regulation	USB150	125	142	150	mA
IUSB_DPM limit, VVIN = 5V, current pulled from input source	USB500	440	470	500	mA	
	USB900	750	5	900	mA	
Iadpt_dpm	AC adapter regulation accuracy, $V_{VIN}=5V$	Input current limit 1.5A, REG00[2:0] = 101	1.3	1.46	1.5	A
I _{IN_START}	Input current limit during system start up	V _{SYS} <2.2V		100		mA
KILIM	IIN = KILIM/RILIM	IINDPM = 1.5A	440	485	530	AxΩ
BAT Over-Voltag	ge Protection					
VBATOVP	Battery over-voltage threshold	VBAT rising, as percentage of VBAT_REG		103		%
VBATOVP_HYST	Battery over-voltage hysteresis	V_{BAT} falling, as percentage of $V_{BAT_{REG}}$		1		%
tватоvр	Battery over-voltage deglitch time to disable charge			32		ms
Thermal Regula	tion and Thermal Shutdown	2				
T _{J_REG}	Junction temperature regulation accuracy	REG06[1:0] = 11		120		°C
Тѕнит	Thermal shutdown rising temperature	Temperature increasing		150		°C
	Thermal shutdown hysteresis			20		°C
TSHUT_HYS	Thermal shutdown rising deglitch	Temperature increasing delay		1		ms
	Thermal shutdown falling deglitch	Temperature decreasing delay		1		ms
COLD/HOT Ther	rmistor Comparator	Γ	1			
VLTF	Cold temperature threshold in charger mode, TS1/TS2 pin voltage rising threshold	Charger suspends charge. As percentage to V _{VREG}	73	73.5	74	%
VLTF_HYS	Cold temperature hysteresis in charger mode, TS1/TS2 pin voltage falling	As percentage to V _{VREG}		0.06		%
Vhte	Hot temperature in charger	As percentage to VVREG	46.6	47.7	48.8	%

	mode, TS1/TS2 pin voltage					
	falling threshold					
	Cut-off temperature in charger					
V _{TCO}	mode, TS1/TS2 pin voltage	As percentage to V _{VREG}	44.2	44.7	45.2	%
	falling threshold					\sim
	Deglitch time for temperature	VTS1& VTS2> VLTF, Or VTS1&VTS2< VTCO,		10		ms
	out of range detection	or Vts1&Vts2< Vhtf				
	Cold temperature threshold 0 in				5	
VLTF_BOOST0	boost mode, TS1/TS2 pin	As percentage to VREG REG02[1] = 0	75.5	76	76.5	%
	voltage rising threshold					
	Cold temperature threshold 0					
	hysteresis in boost mode,	As percentage to VREG REG02[1] = 0	N			
VLTF_HYS_BOOST0	TS1/TS2 pin voltage falling	(Approx. 1°C w/ 103AT)		1		%
	threshold					
	Cold temperature threshold 1 in	xO				
VLTF_BOOST1	boost mode, TS1/TS2 pin	As percentage to VREG REG02[1] = 1	78.5	79	79.5	%
	voltage rising threshold	(Approx20°C w/ 103AT)				
	Cold temperature threshold 1					
	hysteresis in boost mode,	As percentage to VREG REG02[1] = 1				
VLTF_HYS_BOOST1	TS1/TS2 pin voltage falling	(Approx. 1°C w/ 103AT)		0.43		%
	threshold	2				
	Hot temperature threshold 0 in					
VHTF_BOOST0	boost mode, TS1/TS2 pin	As percentage to VREG REG06[3:2] =		36		%
	voltage falling threshold	01 (Approx. 55°C w/ 103AT)				
	Hot temperature threshold 1 in					
V _{HTF_BOOST1}	boost mode, TS1/TS2 pin	As percentage to VREG REG06[3:2] =		33		%
	voltage falling threshold	00 (Approx. 60°C w/ 103AT)				
	Hot temperature threshold 2 in					
VHTF_BOOST2	boost mode, TS1/TS2 pin	As percentage to VREG REG06[3:2] =		30		%
	voltage falling threshold	10 (Approx. 65°C w/ 103AT)				70
Charge Over-Cur						
	HSFET over-current threshold		5.3	7.5		А
	System over load threshold		5.5	9.0		A
•	PWM switching frequency, and		5.5	9.0		~
Fsw			1300	1500	1700	kHz
	digital clock			00		%
	Maximum PWM duty cycle			99		70
BOOST Mode Op	erallon					

|--|

Votg_reg	OTG output voltage	I _{VIN} =0 , REG06[7:4] = 0111 (4.998 V)		5		V
Votg_reg_acc	OTG output voltage accuracy	G output voltage accuracy $I_{VIN}=0$, REG06[7:4] = 0111 (4.998 V)				%
V otg_bat	Battery voltage exiting OTG mode	BAT falling, REG04[1] = 1	2.9			V
1	OTO mode sutrait surrent	REG01[0]=0	1			А
Іотд	OTG mode output current	REG01[0]=1	2.1			А
Votg_ovp	OTG over voltage threshold	VIN rising	5.9	6.1	6.3	V
Votg_ovp_hys	OTG over-voltage threshold hysteresis	VIN falling		200	5	mV
Votg_lszocp	LSFET cycle-by-cycle current limit			6.4		A
VREG LDO			$\boldsymbol{\lambda}$			
<u> </u>		Vvin=6V , Ivreg=40mA	4.75	5.0	5.25	V
Vvreg	VREG LDO output voltage	Vvin=5V , Ivreg=20mA	4.5	4.77		V
Ivreg	VREG LDO current limit	V _{VIN} =5V , V _{VREG} =3.8V		76		mA
Logic I/O Pin C	haracteristics(OTG,CDIS,PSEL,PG	N)				
VIL	Input low threshold (OTG, CDIS)				0.4	V
VIH	Input high threshold (OTG, CDIS)		1.05			V
Vol	STAT output low saturation voltage	Sink current = 5 mA			0.4	V
Ibias	High level leakage current (OTG, CDIS)	Pull up rail 1.8V			1	uA
Ilkg_stat	STAT leakage current	STAT in high impedance, and STAT=20V			1	uA
I ² C Interface (S	DA, SCL, INT)		I			
Vih	Input high threshold level	V _{PULL-UP} = 1.8V, SDA and SCL	1.05			V
VIL	Input low threshold level	VPULL-UP = 1.8V, SDA and SCL			0.4	V
V _{OL}	Output low threshold level	Sink current = 5mA			0.4	V
Ibias	High-level leakage current	VPULL-UP = 1.8V, SDA and SCL			1	uA
Ilkg_int	INT leakage current	INT in high impedance, and INT=5V			1	uA
fscl	SCL clock frequency				400	kHz
Digital Clock A	nd Watchdog Timer			•	-	
fнız	Digital crude clock	VREG LDO disabled	100	125	150	kHz
fdig	Digital clock	VREG LDO enabled	1350	1500	1650	kHz

Table 5 Electrical Specifications

Typical Characteristics

 $V_{VIN_UVLOZ} < V_{VIN} < V_{OVR} \& V_{VIN} > V_{BAT} + V_{SLEEP} , T_J = -40^\circ \mathbb{C} - -125^\circ \mathbb{C} \text{ and } T_J = 25^\circ C \text{ for typical values unless other noted.}$

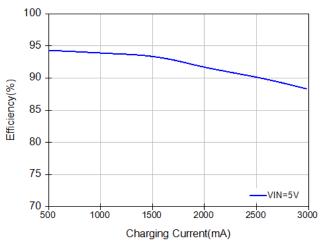


Figure 4 Charging Efficiency vs. Charging Current

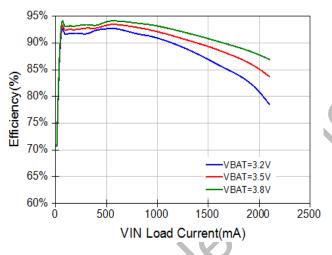


Figure 6 Boost Mode Efficiency vs. VIN Load Current

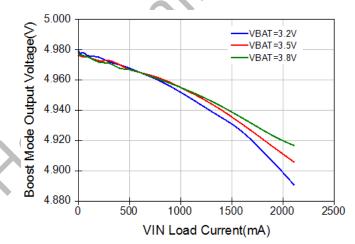


Figure 8 Boost Mode VIN Voltage Regulation vs. VIN Load Current

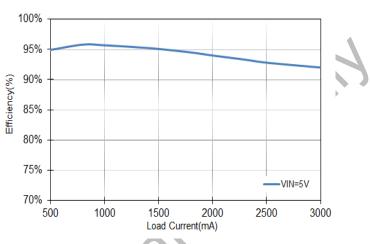
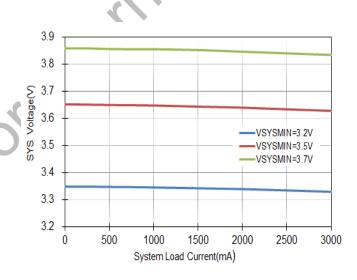
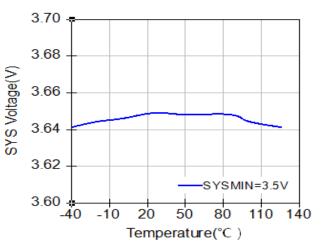




Figure 5 System Efficiency vs. System Load Current

HL7026_V1.1.Nov.2018

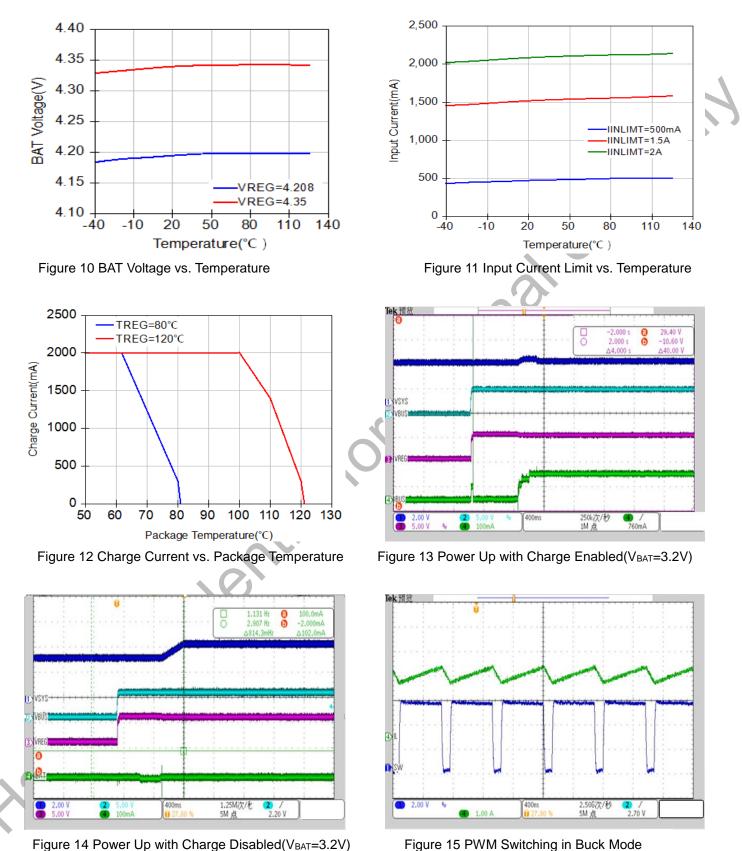


Figure 15 PWM Switching in Buck Mode

<u>HL7026</u>

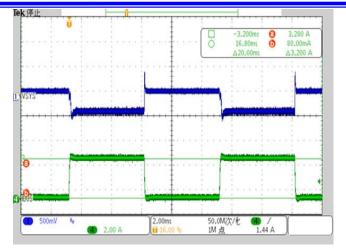


Figure 16 Input Current DPM Response Without Battery

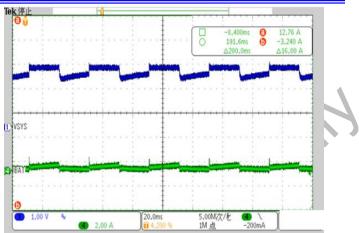


Figure 17 Load Transient During Supplement Mode

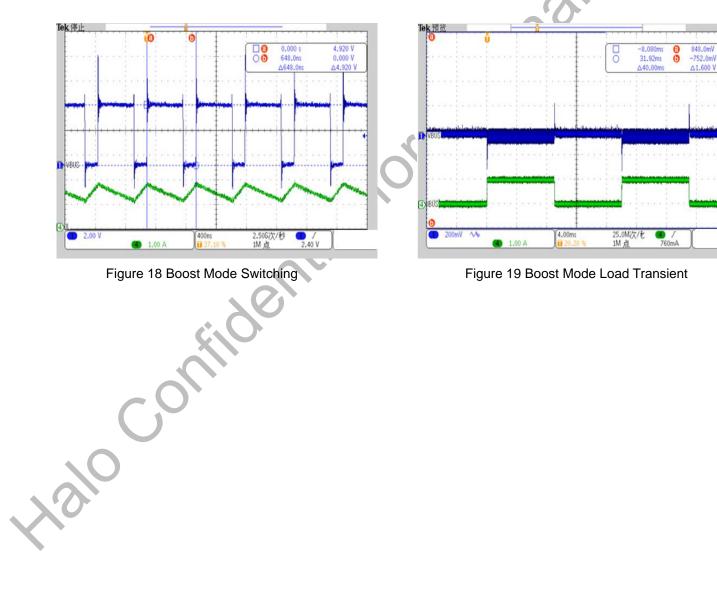


Figure 19 Boost Mode Load Transient

Detailed Description

The HL7026 is a single cell Li-ion battery charger with power path management and I²C interface. The device integrates the input reverse blocking MOSFET (PROTFET), high-side switching MOSFET (HSFET), low-side switching MOSFET (LSFET), and power-path MOSFET (PPFET) between system and battery. The device also integrates the bootstrap diode for the high-side gate driver.

Device Power Up

Power-On-Reset (POR)

The internal circuits are powered from the higher voltage of VIN and V_{BAT}. When VIN or V_{BAT} rises above V_{BAT_UVLO}, the battery depletion comparator and PPFET driver are active. I²C interface is ready for communication and all the registers are reset to default value. The host can access all the registers after POR.

Power Up from Battery

If only battery is present and the voltage is above depletion threshold (V_{BAT_DPL}), the PPFET turns on and connects battery to system. The Low-Drop-Out (LDO) regulator on VREG pin stays off to minimize the quiescent current. The low R_{DSON} in PPFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time. The device always monitors the discharge current through PPFET. When the system is overloaded or shorted, the device will immediately turn off PPFET and keep PPFET off until the input source plugs in again.

Turn Off Power Path

The PPFET can be turned off by the I²C host through REG07[5]. This bit allows the user to independently turn off the PPFET when the battery condition becomes abnormal during charging. When PPFET is off, there is no path to charge or discharge the battery.

When battery is not attached, the PPFET should be turned off by setting REG07[5] to 1 to disable charging and supplement mode.

HL7026

Shipping Mode

When end equipment is assembled, the system is connected to battery through PPFET. There will be a small leakage current to discharge the battery even when the system is powered off. In order to extend the battery life during shipping and storage, the device can turn off PPFET so that the system voltage is zero to minimize the leakage.

In order to keep PPFET off during shipping m01ode, the host has to disable the watchdog timer (REG05[5:4]=00) and disable PPFET (REG07[5]=1) at the same time.

Power Up from External DC Source

When the DC source plugs in, the HL7026 checks the input source voltage to turn on VREG LDO and all the bias circuits. It also checks the input current limit before starts the buck converter.

VREG LDO

The VREG LDO supplies internal circuits as well as the power HSFET & LSFET gate drivers. The LDO also provides a bias rail to external resistors connected to TS1/TS2 pin. The pull-up rail of STAT can be connected to VREG as well.

The VREG is enabled when all the conditions valid:

- 1. VVIN is higher than VVIN_UVLO.
- V_{VIN} is higher than V_{BAT} + V_{SLEEPZ} in buck mode, or
 V_{VIN} is lower than V_{BAT} + V_{SLEEPZ} in boost mode.
- 3. After typical 220ms delay (100 ms minimum) is complete.

If one of the above conditions is not valid, the device is in high impedance mode with REGN LDO off. The device

draws less than I_{VIN} (15 μ A typical) from VIN during high impedance state. The battery powers up the system when the device is in high impedance mode.

Input Source Qualification

After VREG LDO powers up, HL7026 checks the current capability of the input source. The input source has to meet the following requirements to start the buck converter.

1. VIN voltage below V_{VIN_OV} (7.1V typical).

2. VIN voltage above V_{VIN_UVO} (3.9V typical) when pulling 30mA (poor source detection).

Once the input source passes all the above conditions, the status register REG08[2] goes high and PGN goes low. An INT assertion pulse is sent. If the device fails the above validation conditions, it will repeat the detection every 2 seconds.

Input Current Limit Detection

The USB ports on personal computers are convenient charging source for portable devices (PDs). If the portable device is attached to a USB host, the USB specification requires the portable device to draw limited current (100mA/500mA in USB 2.0, and 150mA/900mA in USB 3.0). If the portable device is attached to a charging port, it is allowed to draw up to 3A.

After REG08[2] goes HIGH or PGN is low, the charger device always runs input current limit detection when a DC source plugs in unless the charger is in high impedance mode during host mode.

The HL7026 sets input current limit through PSEL and OTG pins according to Table 6. After the input current limit detection is done, the input source type is listed in REG08[7:6], and input current limit value updated in REG00[2:0]. The host can also write to REG00[2:0] to change the input current limit.

PSEL/OTG Pin Setting

HL7026 directly takes the external USB PHY device output to decide whether the input is USB host or charging port.

PSEL	OTG	INPUT CURRENT LIMIT	REG08[7:6]
HIGH	LOW	100 mA	01
HIGH	HIGH	500 mA	01
LOW	_	ЗA	10

Table 6 Input Current Limit Detection

High Impedance State with 100mA USB Host

In battery charging specification, the good battery threshold is the minimum charge level of a battery to power up the portable device successfully. When the input source is 100mA USB host, and the battery is above good-battery threshold (V_{BATGD} , 3.65V typical), the device follows battery charging spec and enters high impedance state. In this state, the device is in the lowest quiescent state with VREG LDO and most internal circuits and power devices turned off. To enter high impedance mode, the device sets REG00[7] to 1.

Once the device enters high impedance state in host mode, it stays in high impedance until the I²C host writes REG00[7]=0. When the host wakes up, it is recommended to first check if the device is in high impedance state.

In default mode, the device will reset REG00[7] back to 0 when input source is removed. When another source plugs in, the charger IC will run detection again, and update the input current limit.

Forced Input Current Limit Detection

When adapter is plugged-in, the host can force the

charger device to run input current limit detection by setting REG07[7]=1. After the detection is complete, REG07[7] will return to 0 by itself. And new input current limit is set based on PSEL/OTG.

Buck PWM Converter Power-Up

After the input current limit is set, the buck converter is enabled and the HSFET and LSFET start switching. If battery charging is disabled, PPFET turns off. Otherwise, PPFET stays on to charge the battery.

The HL7026 provides soft-start when ramping up the system rail SYS by limiting the peak inductor current. The charger device sets the input current limit to be the lower value between register setting and ILIM pin.

As a battery charger, the HL7026 work as a fixed frequency 1.5MHz step-down switching regulator. The fixed frequency operation keeps tight control of the switching frequency under all conditions of input voltage, battery voltage, charge current and temperature. All loop compensation components are internal, and the topology is chosen so that low ESR ceramic capacitors can be used for the output LC filter.

PWM Converter in Boost Mode Operation

The HL7026 supports boost converter operation to deliver power from the battery to other portable devices through VIN or VPRT port. The boost mode output provides a maximum output current of 2.1A. The boost operation can be enabled if the following conditions are valid:

- 1. VBAT above VOTG_BAT threshold (set by REG04[1]).
- 2. VVIN less than VBAT + VSLEEP (in sleep mode).

3. Boost mode operation is enabled (OTG pin HIGH and REG01[5:4]=10).

- 4. After 30ms delay from boost mode enable.
- 5.Thermistor Temperature is within boost mode

temperature monitor threshold unless BHOT[1:0] is set to 11(REG06[1:0]) to disable this monitor function.

In boost mode, the HL7026 is configured as a 1.5MHz step-up switching regulator. A proprietary control scheme is used to optimize VIN load transient performance. The device switches from PWM operation to PFM operation at light load to improve efficiency.

During boost mode, the status register REG08[7:6] is set to 11, and the output current can reach up to 2.1 A, selected via I^2C (REG01[0]). The boosted output voltage can be programmed from 4.55 V to 5.5 V by changing BOOSTV bits (REG06[7:4]).

Any fault during boost operation, including VIN over-voltage or over-current, sets the fault register REG09[6] to1 and an INT is asserted.

Power Path Management

The HL7026 accommodates a wide range of input sources from USB, wall adapter, to car battery. The device provides automatic power path selection to supply the system (SYS) from input source (VIN), battery (BAT), or both.

The device separates system from battery with PPFET. The minimum system voltage is set by REG01[3:1]. Even with a fully depleted battery, the system is regulated above the minimum system voltage (default 3.5V).

When the battery is below minimum system voltage setting, the PPFET operates in linear charging mode, and the system rail SYS is always regulated to be 150mV above the minimum system voltage setting. As the battery voltage rises above the minimum system voltage, PPFET is fully turned on and the voltage difference between the system and battery is the V_{DS} of PPFET.

When the battery charging is disabled or terminated, the system is also regulated at 150mV above the minimum system voltage setting or V_{BAT} +80mV, whichever is higher. The status register REG08[0] goes high when the system is in minimum system voltage regulation.

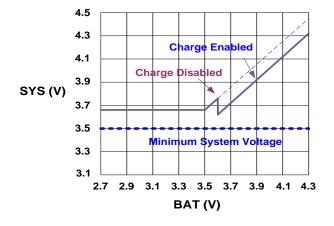


Figure 20 SYS voltage vs. BAT voltage with Power Path

Dynamic Power Management

To meet maximum current limit in USB spec and avoid over loading the adapter, HL7026 features Dynamic Power Management (DPM), which continuously monitors the input current and input voltage.

When input source is over-loaded, either the current exceeds the input current limit (REG00[2:0]) or the voltage falls below the input voltage limit (REG00[6:3]). The device reduces the charge current until the input current falls below the input current limit and the input voltage rises above the input voltage limit.

When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to drop. Once the system voltage falls below the battery voltage, the device automatically enters battery assist mode where the PPFET turns on and battery starts discharging so that the system is supported from both the input source and battery. During DPM mode (either VINDPM or IINDPM), the status register REG08[3] will

go high.

Figure 21 shows the DPM response with 5V/1.2A adapter, 3.2V battery, 2.0A charge current and 3.4V minimum system voltage setting.

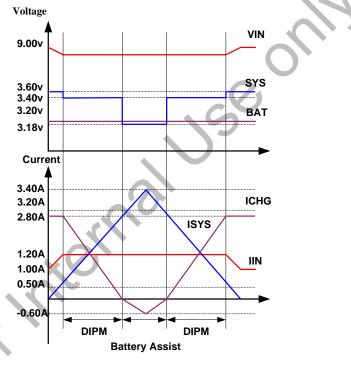


Figure 21 DPM response

Supplement Mode

When the system voltage falls below the battery voltage by more than 30mV, the PPFET turns on to support any additional current SYS may need that the buck converter cannot support. When the system load becomes light again that SYS becomes slightly higher than BAT, PPFET turns off, and system load is entirely supported by buck regulator.

Figure 22 shows the V-I curve of the PPFET gate regulation operation. PPFET turns off to exit supplement mode when the battery is below battery depletion threshold.

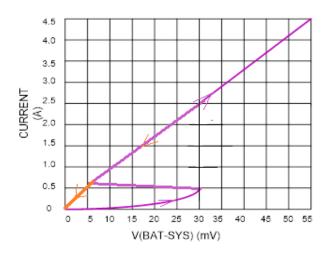


Figure 22 PPFET V-I Curve

Battery Charging Management

The HL7026 charges 1-cell Li-Ion battery with up to 3A charge current. The $17m\Omega$ PPFET improves charging efficiency and minimizes the voltage drop during discharging.

Autonomous Charging Cycle

With battery charging enabled at POR (REG01[5:4]=01), the HL7026 can complete a charging cycle without host involvement. The device default charging parameters are listed in Table7.

DEFAULT MODE	HL7026		
Charging Voltage	4.208 V		
Charging Current	2.048 A		
Pre-charge Current	256 mA		
Termination Current	256 mA		
Temperature Profile	Hot/Cold ;		
Sofaty Timor	8 hours (see Charging		
Safety Timer	Safety Timer section)		

Table 7 Charging Parameter Default Setting

A new charge cycle starts when all the following conditions are valid:

- 1. Converter starts.
- 2. Battery charging is enabled by REG01[5:4]= 01 and

CDIS pin is low.

- 3. No thermistor fault on TS1/TS2 pin.
- 4. No safety timer fault.
- 5. PPFET is not forced to turn off (REG07[5]=0).

The charger device automatically terminates the charging cycle when the charging current is below termination threshold and charge voltage is above recharge threshold. When a full battery voltage is discharged below recharge threshold (REG04[0]), HL7026 automatically starts another charging cycle. After the charge done, either toggle CDIS pin or REG01[5:4] will initiate a new charging cycle.

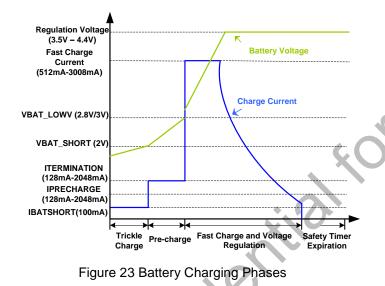
The STAT output indicates the charging status of charging (Low), charging complete or charge disable (High) or charging fault (Blinking). The status register REG08[5:4] indicates the different charging phases: 00-charging disable, 01-precharge, 10-fast charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is complete, an INT is asserted to notify the host.

The host can always control the charging operation and optimize the charging parameters by writing to the registers through I²C.

Battery Charging Profile

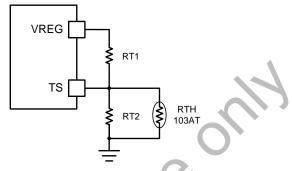
The device charges the battery in three phases: preconditioning, constant current and constant voltage. At the beginning of a charging cycle, the device checks the battery voltage and applies appropriate charging current.

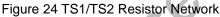
V _{BAT}	CHARGING	REG DEFAULT SETTING	REG08[5:4]	
V _{BAT} < V _{SHORT} (2V typical)	100mA	_	01	



<u>HL7026</u>

V short \leqslant V bat <			
VBATLOWV(Typical	REG03[7:4]	256mA	01
$2V \leqslant V_{BAT}$ < $3V$)			
$V_{BAT} \geqslant V_{BATLOWV}$			
(Typical V _{BAT} \geqslant	REG02[7:2]	2048mA	10
3V)			


Table 8 Charging Current Setting


If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will be less than the programmed value. In this case, termination is temporarily disabled and the charging safety timer is counted at half of the clock rate.

Monitor Cold/Hot Temperature

The HL7026 continuously monitors battery temperature by measuring the voltage between the TS1/TS2 pin and ground, typically determined by a negative temperature coefficient (NTC) thermistor and an external voltage divider. The device compares this voltage against its internal thresholds to determine if charging is allowed. To initiate a charge cycle, the battery temperature must be within the V_{LTF} to V_{HTF} thresholds. During the charge cycle the battery temperature must be within the V_{LTF} to V_{TCO} thresholds, else the device suspends charging and waits until the battery temperature is within the V_{LTF} to VHTF range.

When the TS1/TS2 fault occurs, the fault register REG09[2:0] indicates the actual condition on TS1/TS2 pin and an INT is asserted to the host. The STAT pin indicates the fault when charging is suspended.

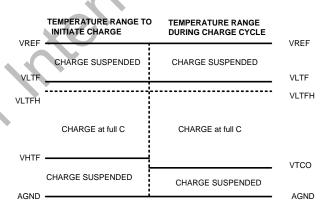


Figure 25 TS1/TS2 Pin Thermistor Sense Thresholds

Assuming a 103AT NTC thermistor is used on the battery pack, the value RT1 and RT2 can be determined by using the following equation:

$$RT1 = \frac{\frac{V_{VREF}}{V_{LTF}} - 1}{\frac{1}{RT2} + \frac{1}{RTH_{COLD}}}$$
(1)

$$RT2 = \frac{V_{VREF} \times RTH_{COLD} \times RTH_{HOT} \times (\frac{1}{V_{LTF}} - \frac{1}{V_{TCO}})}{RTH_{HOT} \times (\frac{V_{VREF}}{V_{TCO}} - 1) - RTH_{COLD} \times (\frac{V_{VREF}}{V_{LTF}} - 1)}$$

Select 0°C to 45°C range for Li-ion or Li-polymer battery, $\mbox{RTH}_{COLD} = 27.28 \ \mbox{k}\Omega$

RTH_{HOT} = 4.911 kΩ

RT1 = 5.52 kΩ

RT2 = 31.23 kΩ

Charging Termination

The HL7026 terminates a charge cycle when the battery voltage is above recharge threshold, and the current is below termination current. After the charging cycle is complete, the PPFET turns off. The converter keeps running to power the system, and PPFET can turn back on to engage supplement mode. When termination occurs, the status register REG08[5:4] is 11, and an INT is asserted to the host. Termination is temporarily disabled if the charger device is in input current/voltage regulation or thermal regulation. Termination can be disabled by writing 0 to REG05[7].

Termination when REG02[0] = 1

When REG02[0] is HIGH to reduce the charging current by 80%, the charging current could be less than the termination current. The charger device termination function should be disabled. When the battery is charged to fully capacity, the host disables charging through CDIS pin or REG01[5:4].

Charging Safety Timer

The HL7026 has safety timer to prevent extended charging cycle due to abnormal battery conditions.

Te safety timer is 4 hours when the battery is below $V_{BATLOWV}$ threshold. The user can program fast charge safety timer through by REG05[2:1]. When safety timer expires, the fault register REG09[5:4] goes 11 and an INT is asserted to the host. The safety timer feature can be disabled via REG05[3].

The following actions restart the safety timer after safety timer expires:

•Toggle the CDIS pin High to Low to High (charge enable)

1L702

- Write REG01[5:4] from 00 to 01 (charge enable)
- Write REG05[3] from 0 to 1 (safety timer enable)

During input voltage/current regulation or thermal regulation, the safety timer counts at half clock rate since the actual charge current is likely to be below the register setting. For example, if the charger is in input current regulation (IINDPM) throughout the whole charging cycle, and the safety time is set to 5 hours, the safety timer will expire in 10 hours. This feature can be disabled by writing 0 to REG07[6].

USB Timer When Charging from USB100mA Source

The total charging time in default mode from USB100mA source is limited by a 45min max timer. At the end of the timer, the device stops the converter and goes to high impedance mode.

Status Outputs (PGN, STAT and INT)

Power Good Indicator (PGN)

In HL7026, PGN goes Low to indicate a good input source when:

- 1. VVIN above VVIN_UVLO
- 2. V_{VIN} above battery (not in sleep)
- 3. VVIN below VACOV threshold

4. above V_{VIN_MIN} when I_{BADSRC} current is applied (not a poor source)

Charging Status Indicator (STAT)

The HL7026 indicates charging state on the open drain STAT pin. The STAT pin can drive an LED to visually indicate charging status according to Table9.

```
CHARGING STATE
```

STAT

Charging in progress	LOW
(including recharge)	LOW
Charging complete	HIGH
Sleep mode, charge disable	HIGH
Charge suspend (Input	
over-voltage, TS1 /TS2 fault,	blinking at 147
timer fault, input or system	blinking at 1Hz
over-voltage)	

Table 9 STAT Pin State

Interrupt to Host (INT)

In some applications, the host does not always monitor the charger operation. The INT notifies the system about the device operation. Any of the following events will generate a 256us wide active-low pulse on INT pin, referred to as an INT assertion.

- USB/adapter source identified (through DIPM detection)
- Good input source detected
- Input removed or above V_{VIN_OV}
- Charge Complete
- Any fault event in REG09

When a fault occurs, the charger device sends out an INT pulse and latches the fault state in REG09 until the host reads the fault register. The NTC fault is not latched and always reports the current thermistor conditions.

Protections

Input Current Limit Setting on ILIM

For safer operation, the HL7026 also uses ILIM pin to place a hardware limit on the maximum allowed input current. The input maximum current is set by a resistor from ILIM pin to ground as:

$$I_{INMAX} = \frac{1V}{R_{ILIM}} \times 530$$
 (2)

HL702

The actual input current limit is the lower value between ILIM setting and register setting (REG00[2:0]). For example, if the register setting is 111 for 3A, and ILIM has a 353Ω resistor to ground for 1.5A, the actual input current limit will be set to 1.5A. ILIM pin can be used to set the input current limit rather than the register settings.

The device detects ILIM pin at 1 V. If ILIM voltage exceeds 1 V, the device enters input current regulation. The voltage on ILIM pin is proportional to the input current. ILIM pin can be used to monitor the input current as following:

$$T_{IN} = \frac{V_{ILIM}}{1V} \times I_{INMAX}$$
(3)

Thermal Regulation and Shutdown

The HL7026 monitors the internal device junction temperature T_J to avoid overheating the chip and limits the IC surface temperature. When the internal junction temperature exceeds the preset limit (REG06[1:0]), the device reduces the charge current until junction temperature maintains at or below the preset limit. The wide thermal regulation limit range from 60°C to 120°C allows the user to optimize the system thermal performance.

During thermal regulation, the actual charging current is usually below the programmed battery charging current. Therefore, termination is disabled, the safety timer runs at half the clock rate, and the status register REG08[1] goes high.

Additionally, the device has thermal shutdown to turn off the converter if junction temperature reaches the shutdown limit for any reason. The fault register

<u>HL7026</u>

REG09[5:4] is 10 and an INT is asserted to the host.

During boost mode, the thermal shut-down protection is also enabled and behaves similarly to when the device is in buck and charge mode. The fault register REG09[5:4] is 10 and an INT is asserted to the host.

Buck Mode Protection

The HL7026 closely monitors the input and system voltage, as well as HSFET and LSFET current for safe buck mode operation.

Input Over Voltage Protection

The maximum input voltage for buck mode operation is set at V_{VIN_OVP} . If VIN voltage exceeds this limit, the device stops switching immediately to protect internal circuitry. The fault register REG09[5:4] will be set to 01. An INT is asserted to the host.

System Over Voltage Protection

The charger device clamps the system voltage during load transient so that the components connect to system would not be damaged due to high voltage. When SYSOVP is detected, the converter stops immediately to clamp the overshoot.

Boost Mode Protection

Output Over Current

The device monitors peak inductor current during boost operation. When it reaches over-current threshold I_{LSFET_OCP}, LSFET is turned off, and HSFET turned on for enough time for the inductor current to discharge before LSFET is allowed to turn on again. If 16 consecutive such events happen, the PWM converter is immediately turned off for around 20ms, and the PWM controller attempts to start up again. REG09[6] is set and an INT is asserted to the host.

If the boost output voltage becomes lower than V_{BAT} due

to any reason, the PWM converter is turned off immediately for around 20ms, and the PWM controller attempts to start up again. REG09[6] is set and an INT is asserted to the host.

Output Over Voltage

The maximum output voltage for buck mode operation is set at V_{OTG_OVP} . If VIN voltage exceeds this limit, the device stops switching immediately to protect internal circuitry. The fault register REG09[5:4] will be set to 01. An INT is asserted to the host.

Battery Protection

Battery Over-Voltage Protection

The battery over-voltage limit is clamped at V_{BAT_OVP} (4% nominal) above the battery regulation voltage. When battery over voltage occurs, the charger device immediately disables charge. The fault register REG09[3] goes high and an INT is asserted to the host.

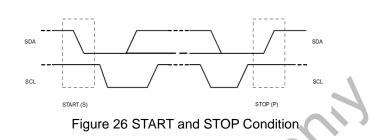
Battery Short Protection

If the battery voltage falls below V_{SHORT} (2V typical), the device immediately turns off PPFET to disable the battery charging or supplement mode. 1ms later, the PPFET turns on and charge the battery with 100-mA current. The device does not turn on PPFET to discharge a battery that is below 2.5 V.

System Over-Current Protection

If the system is shorted or exceeds the over-current limit, the device latches off PPFET. DC source insertion on VBUS is required to reset the latch-off condition and turn on PPFET.

Serial Interface Description


I²C is a 2 wire serial interface developed by Philips Semiconductor (see I²C Bus Specification, version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with a pull-up device. When the bus is idle, both SDA and SCL lines are pulled high. All I²C compatible devices connect to the I²C SDA and SCL buses through open drain I/O pins. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific condition that indicates the START and STOP of data transfer. A slave device receives and /or transmits data on the bus under control of the master device.

HL7026 works as a slave and is compatible with the following data transfer modes as defined in the I²C Bus Specification: Standard mode (100kbps), Fast mode (400kbps), Fast mode plus (1000kbps) and High-speed mode (up to 3.4Mbps in write mode). The interface adds flexibility to the device by making most functions and parameters programmable through the I²C host.

The data transfer protocol for Standard mode, Fast mode and Fast mode plus is the same, therefore referred to as F/S mode in this document. The protocol for High-speed mode is different and referred to as HS mode. The HL7026 device has an initial 7b I²C address of 1101011 (6BH).

F/S Mode Protocol

The master initiates data transfer by generating a START condition. The START condition is when a high-to-low transition occurs on the SDA line while SCL is high. The master stops data transfer by generating a STOP condition, in which a low-to-high transition occurs on the SDA line while SCL is high. This is shown in Figure 26.

HL702

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 27)

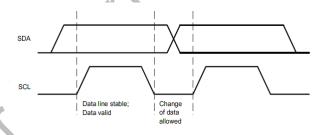


Figure 27 Bit Transfer on the Serial Interface

All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates a acknowledge (see Figure 28) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

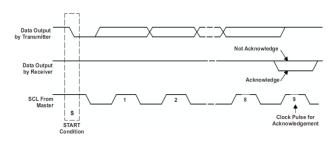


Figure 28 Acknowledge on the I²C Bus

The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high(see Figure 29). This releases the bus and stops the communication link with the addressed slave.

All I²C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address. If a transmission is terminated in advance, the master needs to send a STOP condition to prevent the slave I²C logic from getting stuck in a bad state. Attempting to read data from register addresses not listed in this section will result in FFh being read out.

I²C Update Sequence

The IC requires a START condition, a valid I²C address, a register address byte, and a data byte for a single update. After receiving of each byte, the IC sends acknowledge by pulling the SDA line low during the high period of a single clock. A valid I²C address will selects

HL7026_V1.1.Nov.2018

this IC. The IC performs an update on the falling edge of the acknowledge signal that follows the LSB bit.

For the first update, the IC requires a START condition, a valid I²C address, a register address byte and a data byte. For all consecutive updates, the IC needs a register address byte and a data byte. Once a STOP condition is received, the IC releases the I²C bus and waits for a new START condition.

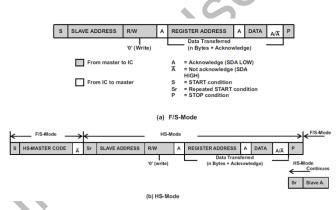


Figure 30 Data Transfer Format in F/S mode and H/S mode

Slave Address Byte

MSB			LSB				
1	1	0	1	0	1	1	Х

The slave address byte is the first byte received following the START condition from the master device.

Register Description

Slave address: 6BH. REG00-07 support Read and Write. REG08-0A are read only.

Register		Address							
Name	Hex Address	7	6	5	4	3	2	1	0
Input Control	00H	0	0	0	0	0	0	0	0
Power-On Configuration	01H	0	0	0	0	0	0	0	1
ICharge Control	02H	0	0	0	0	0	0	1	0
PC/TC Control	03H	0	0	0	0	0	0	1	1
VCharge Control	04H	0	0	0	0	0	1	0	0
Charge Termination/Timer Control	05H	0	0	0	0	0	1	0	1
Boost Voltage/Thermal Regulation	06H	0	0	0	0	0	1	1	0
Operation Control	07H	0	0	0	0	0	1	1	1
System Status	08H	0	0	0	0	1	0	0	0
Fault Register	09H	0	0	0	0	1	0	0	1
Vender Info	0AH	0	0	0	0	1	0	1	0
Shipping Mode	0BH	0	0	0	0	1	0	1	1
IR Compensation/Boost Control	0CH	0	0	0	0	1	1	0	0
Misc Operation Control	0DH	0	0	0	0	1	1	0	1

Table 10 Register Description

Halo confild

Bit Definitions

The following table defines the operation of each register bit. Bold font indicates power-on default values.

Bit	Name	Value	Туре	Function	
Input	t Control Regis	ster REG00, A	Address: 0	00 (Default Value: 00110000, or 30)	
7		0	R/W	Disable	
/	EN_HIZ	1	r/w	Enable	
		0000		3.88V	0
		0001		3.96V	Se
		0010		4.04V	5
		0011		4.12V	
		0100		4.20V	
		0101		4.28V	
		0110		4.36V	
		0111		4.44V	
		1000	R/W	4.52V	REG0D[5]=0
		1001		4.60V	
		1010		4.68V	
		1011		4.76V	
		1100		4.84V	
		1101		4.92V	
6:3	VINDPM	1110		5.00V	
0.3	VINDPIVI	1111		5.08V	
		0000		8.32V	
		0001	20	8.50V	
		0010		8.64V	
		0011		8.82V	
		0100		9.01V	
	C	0101		9.19V	
		0110	R/W	9.33V	
		0111	K/VV	9.51V	REG0D[5]=1
		1000		9.69V	
	0	1001		9.87V	
		1010		10.01V	
		1011		10.19V	
		1100		10.38V	
		1101		10.56V	

		1110		10.70V											
		1111	1	10.88V					1						
		000		100mA					Input c	urrent limit, ac	tual input				
		001		150mA					current	limit is the low	ver of I ² C				
		010		500mA					and ILI	M Pin.					
		011		900mA											
2:0	IINLIM	100	R/W	1A					Note:	(
		101		1.5A					PSEL =	= Lo : 3 A (111)				
		110		2A						PSEL = Hi : 100 mA (000) (0					
		111		ЗА					pin = Lo 500 mA	o) or A (OTG pin = ł	Hi)				
Powe	er-On Configura	ation Regist	er REG01,	, Address: 01	(Default V	'alue: 0	0011011, or	1B)							
	Register	0		Keep curre	nt register	setting	l	-7							
7	Reset	1	R/W	Reset to def	ault. Back	to 0 afte	er register res	et.							
	l ² C	0		Normal			0								
6	Watchdog		R/W	Reset. Back to 0 after register reset.											
	Timer Reset	1		Reset. Back	to 0 after r	egister	reset.								
		00		Charge Disa	able										
5:4	CHG_CONF	01	R/W	Charge Bat	tery										
5.4	IG	10	Γ\/ V V	OTG	XC	/									
		11		010											
		000		3.0V											
		001		3.1V											
		010		3.2V											
3:1	SYS_MIN	011	R/W	3.3V					 Minimum system voltage limit 						
0.1	010_001	010_0		010_11111	010_001	100		3.4V	3.4V						
		101		3.5V					_						
		110		3.6V											
	C	111		3.7V											
0	BOOST_LIM	0	R/W	1A					Boost M	Mode Current	Limit				
-		1		2.1A											
ICha	rge Control Reg	gister REG0	2, Address	s: 02 (Default	Value: 01	100000	, or 60)				1				
X	0			Binary	(mA)	_	Binary	(mA)	_	Binary	(mA)				
				0000 00	512	_	0100 00	1536		1000 00	2560				
7:2	ICHG		R/W	0000 01	576	_	0100 01	1600	_	1000 01	2624				
				0000 10	640		0100 10	1664		1000 10	2688				
						-			-						

	_希视	πX							<u>HL7</u>	026	
				0001 00	768	0101 00	0 1792		1001 00	2816	
				0001 01	832	0101 0 ⁻	1 1856		1001 01	2880	
				0001 10	896	0101 10	0 1920		1001 10	2944	
				0001 11	960	0101 1	1 1984		1001 11	3008	
				0010 00	1024	0110 0	0 2048				
				0010 01	1088	0110 0 ⁻	1 2112			\sim	
				0010 10	1152	0110 10	2176		Note:		
				0010 11	1216	0110 1 ⁻	1 2240		ICHG highe	er than	
				0011 00	1280	0111 00	2304		3008mA is	not	
				0011 01	1344	0111 0 ⁻	1 2368		supported.		
				0011 10	1408	0111 10	2432				
				0011 11	1472	0111 1	1 2496				
		0		VLTF_BOOST0	(Typ. 76% of	VREG or -10°	C w/ 103AT	Set Bo	oost Mode tem	perature	
1	BCOLD	U	R/W	thermistor)					cold monitor threshold voltage t		
		1		VLTF_BOOST1	(Typ. 79% of	VREG or -20°	C w/ 103AT	disable	e boost mode		
				thermistor)							
		0		ICHG as Fast Charge Current (REG02[7:2]) and IPRECH as Pre-Charge Current							
	FORCE_20P	Ŭ	- R/W	(REG03[7:4]) programmed							
0	СТ	1	R/W	ICHG as 20% Fast Charge Current(REG02[7:2]) and IPRECH as 50% Pre-Charge							
		1		Current (RE	G03[7:4])pro	grammed					
PC/T	C Control Regi	ster REG03	Address:	03 (Default	Value: 00010	001, or 11)					
		0000		128mA							
		0001		256mA							
		0010		384mA							
		0011		512mA							
		0100		640mA							
		0101		768mA							
		0110		896mA							
		0111	R/W	1024mA				Dro	Charge Cur	ont Limit	
7.4	IPRECHG	1000	K/VV	1152mA				PIE	e-Charge Curr	ent Limit	
7:4		1001		1280mA							
7:4			1	1408mA							
7:4		1010									
7:4		1010 1011		1536mA							
7:4				1536mA 1664mA							
7:4		1011									
7:4		1011 1100		1664mA							

0000 0001 256mA 2														
No No Second Se				0000		128mA								
3.0 ITERM 0011 0100 0101 0101 0101 1000 512mA 640mA Image: Control Register REGO, Address: 04 (Def and Section 1) Image: Control Register REGO, Address: 04 (Def and Section 1) Image: Control Register REGO, Address: 04 (Def and Section 1) Image: Control Register REGO, Address: 04 (Def and Section 1) Image: Control Register REGO, Address: 04 (Def and Section 1) Image: Control Register REGO, Address: 04 (Def and Section 1) Image: Control Register REGO, Address: 04 (Def and Section 1) Image: Control Register REGO, Address: 04 (Def and Value: 10110010, or B2) 7.2 VREG Image: Control Register REGO, Address: 04 (Def and Value: 10110010, 3760, 1000 00, 4.048, 1100 01, 4.248, 0000 10, 3.552, 0100 11, 3.752, 1000 10, 4.048, 1100 10, 4.248, 0000 10, 3.552, 0100 11, 3.760, 1000 00, 4.048, 1100 10, 4.248, 0000 10, 3.552, 0100 11, 3.656, 1001 10, 4.048, 1100 10, 4.364, 0100 10, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 4.048, 1100 10, 4.368, 0001 00, 3.644, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 4.144, 1110 00, 4.328, 0001 01, 4.040, 0001 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 4.144, 1110 00, 4.364, 0101 01, 4.144, 1110 00, 4.364, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 4.144, 1110 00, 4.444, 001 000, 3.644, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 4.144, 1110 00, 4.444, 001 001 01, 4.444, 001 001 01, 4.444, 001 001 01, 3.664, 0101 01, 3.664, 0101 01, 3.664, 0101 01, 4.144, 1110 00, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.444, 001 010 01, 4.				0001		256mA								
3.0 ITERM 0100 0101 0110 0111 1000 1011 1000 1011 1000 1010 1010 1010 1010 RW 640mA 768mA 1024mA 1152mA 1152mA 1152mA 1152mA 1168mA 1152mA 1168mA 1100 1010 1010 1010 1010 Image: Ima				0010		384mA								
3.0 ITERM 0101 0110 0111 1000 1001 RW 768mA 1024mA 1152mA 1152mA Termination Current Limit 1001 1010 1011 1001 1152mA Termination Current Limit 1100 1010 1011 1001 1153mA Termination Current Limit 1100 1101 1100 1111 1664mA Termination Current Limit 1110 1111 123mA Termination Current Limit 1110 1111 120amA Termination Current Limit 1110 1111 120amA Termination Current Limit 1111 0000 00 3604 0100 00 3.604 1000 0 0000 00 3.604 0100 00 3.760 1000 0 4.018 1100 0 4.228 0000 10 3.562 0100 11 3.804 1000 10 4.032 1000 10 4.332 0001 10 3.664 0101 00 3.852 1001 10 4.048 1101 10 4.344 0000 10 3.562 0100 11 3.864 1001 10 4.444 1011 10 4.345				0011		512mA								
3:0 ITERM 010 011 100 1001 1001 101 1000 R/W B96mA 1024mA Termination Current Limit 1000 1001 1010 1001 1010 1152mA Termination Current Limit 1000 1001 1010 1152mA Termination Current Limit 1000 1010 1010 158mA Termination Current Limit 1100 1110 1100 158mA Termination Current Limit 1100 1111 1100 158mA Termination Current Limit 1100 1111 1100 158mA Termination Current Limit 1100 1111 120mA Termination Current Limit 1111 1000 1111 120mA Termination Current Limit 1111 1000 1111 100400 3560 0100 00 3.761 1000 00 4.016 1100 01 4.282 0000 10 3.562 0100 10 3.782 1000 10 4.048 1100 10 4.384 0000 10 3.652 0100 10 3.868 1001 10 4.044 1100 10 4.384 0001 10				0100		640mA								
3:0 ITERM 0111 1000 1001 1010 1010 1010 1010 101				0101		768mA								
3:0 ITERM 1000 1001 RW 1152mA Termination Current Limit 1001 1001 1280mA 1280mA Internation Current Limit 1010 1011 1536mA Internation Current Limit Internation Current Limit 1100 1101 1280mA Internation Current Limit Internation Current Limit 1100 1111 2048mA Internation Current Limit Internation Current Limit VCharge Control Register REG04, Address: 04 (Default Value: 1011001) or B2) Internation Current Limit Internation Current Limit 7.2 VREG Register REG04, Address: 04 (Default Value: 1011001) 3.760 1000 00 4.016 1100 01 4.228 000 10 3.580 010 10 3.782 1000 11 4.082 1100 11 4.322 0001 10 3.684 010 10 3.824 100 10 4.084 110 10 1 4.328 001 10 3.684 010 10 3.844 100 10 4.040 100 11 4.381 001 10 3.664 010 10 3.864 100				0110		896mA								
1000 1152mA 1280mA 1001 1001 1280mA 1010 1010 11536mA 1010 1100 1564mA 1100 1664mA 1792mA 1111 2048mA 2048mA VCharge Control Register REGO4, Address: 04 (Default Value: 1010010, or B2) VCharge Control Register REGO4, Address: 04 (Default Value: 1010010, or B2) Binary (V) Binary (U) Binary (U) Binary		2.0	ITEDM	0111		1024mA					Tormin	ation Current	Limit	
Into 1408mA 1010 1536mA 1100 1536mA 1101 1664mA 1101 1101 1110 1920mA 2048mA 2048mA VCharge Control Register REG04, Address: 04 (Default Value: 1010010, or B2) Veharge Control Register REG04, Address: 04 (Default Value: 1010010, or B2) Veharge Control Register REG04, Address: 04 (Default Value: 1010010, or B2) Veharge Control Register REG04, Address: 04 (Default Value: 1010010, or B2) Veharge Control Register REG04, Address: 04 (Default Value: 1010101, 3.776 0000 00 3.560 0101 01 3.776 1000 01 4.082 0000 10 3.562 0100 10 3.780 1000 10 4.084 0000 10 3.562 0100 10 3.840 1001 01 4.084 0001 10 3.584 0101 01 3.880 1001 01 4.084 001 10 3.680 0101 01 3.881 101 01 4.111 1.412 001 10 3.680 0110 01 3.894		3.0		1000		1152mA						allon Current		
Introduct Introduct <t< td=""><td></td><td></td><td></td><td>1001</td><td></td><td>1280mA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				1001		1280mA								
Into Into <th< td=""><td></td><td></td><td></td><td>1010</td><td></td><td>1408mA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				1010		1408mA								
Into Into <th< td=""><td></td><td></td><td></td><td>1011</td><td></td><td>1536mA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				1011		1536mA								
Into 1110 1920mA 2048mA 2048mA VCharge Control Register REG04, Address: 04 (Default Value: 1011001, or B2) Note Binary (V) Binary (1100		1664mA				20				
Init 2048mA VCharge Control Register REG04, Address: 04 (Default Value: 1011001, or B2) Note Binary (V) Binary				1101		1792mA								
VCharge Control Register REG04, Address: 04 (Default Value: 10110010, or B2) Binary (V) Binary Binary (V)				1110		1920mA			.0					
T.2 VREG Binary (V) Binary (U)				1111		2048mA								
T:2 VREG 0000 00 3.504 0100 00 3.760 1000 00 4.016 1100 00 4.282 0000 10 3.520 0100 01 3.776 1000 01 4.032 1100 01 4.288 0000 10 3.520 0100 10 3.776 1000 10 4.048 1100 10 4.288 0000 10 3.520 0100 11 3.808 1000 11 4.048 1100 10 4.304 0000 10 3.520 0100 11 3.808 1000 11 4.064 1100 11 4.320 0001 10 3.520 0101 11 3.808 1001 10 4.08 1101 01 4.336 0001 10 3.564 0101 01 3.840 1001 10 4.08 1001 10 4.368 0001 10 3.600 0101 10 3.856 1001 11 4.128 1101 11 4.368 0011 00 3.632 0110 00 3.888 1010 00 4.144 1110 00 4.400 0101 01 3.640 0110 10 3.994		VCha	rge Control Reg	gister REG	04, Addres	s: 04 (Default	Value: 10	110010, or	B2)					
7:2 VREG 0000 01 3.520 0100 01 3.776 1000 01 4.032 1100 01 4.288 0000 10 3.536 0100 10 3.776 1000 01 4.048 1100 10 4.304 0000 11 3.552 0100 11 3.808 1000 11 4.064 1100 11 4.320 0001 00 3.552 0100 10 3.824 1001 00 4.08 1101 00 4.336 0001 10 3.600 0101 10 3.840 1001 01 4.064 1101 10 4.368 0001 10 3.600 0101 10 3.840 1001 01 4.064 1101 10 4.368 0001 10 3.600 0101 10 3.840 1001 01 4.112 1101 10 4.368 0011 10 3.616 0101 11 3.872 1001 11 4.128 1101 11 4.364 0010 00 3.632 0110 00 3.888 1010 00 4.144 1110 00 4.400 011 01 3.648 0110 10 3.921						Binary	(V)	Binary	(V)	Binary	(V)	Binary	(V)	
7:2 VREG 0000 10 3.536 0100 10 3.792 1000 10 4.048 1100 10 4.304 7:2 VREG 0001 10 3.552 0100 11 3.808 1000 10 4.048 1100 10 4.304 0001 10 3.552 0100 11 3.808 1000 10 4.064 1100 11 4.320 0001 10 3.552 0101 00 3.824 1001 00 4.08 1101 00 4.336 0001 10 3.568 0101 01 3.808 1001 10 4.086 1101 01 4.336 0001 10 3.616 0101 11 3.840 1001 10 4.112 1101 10 4.368 0010 00 3.632 0110 01 3.856 1001 10 4.114 1110 00 4.400 010 00 3.632 0110 01 3.904 1010 01 4.16 1110 01 4.448 0010 00 3.632 0110 10 3.904 1010 10 4.16 1110 01 4.448 011 01 3.648						0000 00	3.504	0100 00	3.760	1000 00	4.016	1100 00	4.272	
7:2 VREG 000011 3.552 010011 3.808 100011 4.064 110011 4.320 7:2 VREG 000100 3.568 010100 3.804 100110 4.084 110100 4.336 7:2 VREG 001101 3.568 010101 3.804 100110 4.084 110100 4.336 0001101 3.600 010110 3.856 100110 4.112 110110 4.352 0001101 3.616 010111 3.872 100111 4.128 110110 4.368 001100 3.616 010111 3.872 100111 4.128 110110 4.368 001000 3.632 011000 3.888 101000 4.144 111000 4.400 010101 3.648 011010 3.904 101010 4.16 11101 4.448 001100 3.696 011100 3.920 101010 4.16 11101 4.448 011101 3.712 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000 01</td> <td>3.520</td> <td>0100 01</td> <td>3.776</td> <td>1000 01</td> <td>4.032</td> <td>1100 01</td> <td>4.288</td>						0000 01	3.520	0100 01	3.776	1000 01	4.032	1100 01	4.288	
7:2 VREG 0001 00 3.568 0101 00 3.824 1001 00 4.08 1101 00 4.336 7:2 VREG 0001 00 3.568 0101 01 3.840 1001 01 4.08 1101 01 4.336 7:2 VREG 0001 10 3.568 0101 01 3.840 1001 01 4.08 1101 01 4.352 0001 10 3.600 0101 10 3.840 1001 10 4.112 1101 10 4.368 0001 10 3.600 0101 10 3.856 1001 10 4.112 1101 10 4.368 0001 00 3.632 0110 00 3.888 1010 00 4.144 1110 00 4.400 001 01 3.648 0110 10 3.904 1010 01 4.16 1110 01 4.432 0011 00 3.696 0111 10 3.920 1010 10 4.164 1011 01 4.448 0011 00 3.696 0111 10 3.968 1011 01 4.208 1111 01 4.464						0000 10	3.536	0100 10	3.792	1000 10	4.048	1100 10	4.304	
7:2 VREG 0001 01 3.584 0101 01 3.840 1001 01 4.096 1101 01 4.352 7:2 VREG 001 10 3.600 0101 10 3.840 1001 01 4.096 1101 01 4.352 7:2 VREG 001 10 3.600 0101 10 3.840 1001 10 4.112 1101 10 4.368 0001 11 3.616 0101 11 3.872 1001 11 4.128 1101 11 4.384 0010 00 3.632 0110 00 3.888 1010 00 4.144 1110 00 4.400 0010 10 3.664 0110 10 3.904 1010 11 4.16 1110 10 4.432 0010 11 3.664 0110 10 3.920 1010 10 4.164 1110 10 4.448 0011 01 3.680 0111 01 3.936 1011 11 4.192 1110 11 4.448 0011 01 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.480 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0000 11</td><td>3.552</td><td>0100 11</td><td>3.808</td><td>1000 11</td><td>4.064</td><td>1100 11</td><td>4.320</td></t<>						0000 11	3.552	0100 11	3.808	1000 11	4.064	1100 11	4.320	
7:2 VREG 0001 10 3.600 0101 10 3.856 1001 10 4.112 1101 10 4.368 7:2 VREG 0001 11 3.616 0101 11 3.872 1001 11 4.128 1101 11 4.368 001 00 3.632 0110 00 3.888 1010 00 4.144 1110 00 4.400 0010 01 3.648 0110 01 3.904 1010 01 4.16 1110 01 4.400 0010 10 3.648 0110 01 3.904 1010 01 4.16 1110 00 4.400 0010 10 3.664 0110 10 3.920 1010 10 4.176 1110 10 4.432 0010 11 3.680 0110 11 3.936 1010 11 4.192 1110 11 4.448 0011 00 3.696 0111 00 3.952 1011 00 4.208 1111 00 4.448 0011 01 3.712 0111 01 3.984 1011 10 4.244 1111 00 4.496 0111 11 3.744						0001 00	3.568	0101 00	3.824	1001 00	4.08	1101 00	4.336	
7:2 VREG RW 0001 11 3.616 0101 11 3.872 1001 11 4.128 1101 11 4.384 0010 00 3.632 0110 00 3.888 1010 00 4.144 1110 00 4.400 0010 01 3.648 0110 11 3.904 1010 01 4.16 1110 01 4.416 0010 01 3.648 0110 10 3.904 1010 10 4.16 1110 01 4.432 0010 11 3.648 0110 10 3.904 1010 10 4.16 1110 10 4.432 0010 11 3.648 0110 10 3.920 1010 10 4.16 1110 10 4.432 0010 11 3.680 0110 11 3.936 1010 11 4.164 4.448 0011 10 3.696 0111 00 3.952 1011 00 4.208 1111 01 4.480 0011 10 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.496 0011 11 3.728 0111 10 3.984 1011 10 4.24 1111 10 4.496 011 11 3.744					.0	0001 01	3.584	0101 01	3.840	1001 01	4.096	1101 01	4.352	
1 0010 00 3.632 0110 00 3.888 1010 00 4.144 1110 00 4.400 0010 01 3.648 0110 01 3.904 1010 01 4.16 1110 01 4.416 0010 10 3.648 0110 10 3.904 1010 01 4.16 1110 01 4.432 0010 10 3.664 0110 10 3.920 1010 10 4.176 1110 10 4.432 0010 11 3.680 0110 11 3.936 1010 11 4.192 1110 11 4.448 0011 00 3.696 0111 00 3.952 1011 00 4.208 1111 00 4.464 0011 01 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.480 0011 10 3.728 0111 10 3.984 1011 10 4.24 1111 01 4.496 0011 11 3.744 0111 11 4.000 1011 11 4.256 1111 11 4.512 1 BATLOWV 0 R/W 2.8V <td co<="" td=""><td></td><td></td><td></td><td></td><td>X</td><td>0001 10</td><td>3.600</td><td>0101 10</td><td>3.856</td><td>1001 10</td><td>4.112</td><td>1101 10</td><td>4.368</td></td>	<td></td> <td></td> <td></td> <td></td> <td>X</td> <td>0001 10</td> <td>3.600</td> <td>0101 10</td> <td>3.856</td> <td>1001 10</td> <td>4.112</td> <td>1101 10</td> <td>4.368</td>					X	0001 10	3.600	0101 10	3.856	1001 10	4.112	1101 10	4.368
0010 01 3.648 0110 01 3.904 1010 01 4.16 1110 01 4.416 0010 10 3.664 0110 10 3.920 1010 10 4.176 1110 10 4.432 0010 11 3.664 0110 10 3.920 1010 10 4.176 1110 10 4.432 0010 11 3.664 0110 10 3.920 1010 10 4.176 1110 10 4.432 0010 11 3.680 0110 11 3.936 1010 11 4.192 1110 11 4.448 0011 00 3.696 0111 00 3.952 1011 00 4.208 1111 00 4.464 0011 01 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.480 0011 10 3.728 0111 10 3.984 1011 10 4.245 1111 10 4.496 011 11 3.744 0111 11 4.000 1011 11 4.256 1111 11 4.512 1 BATLOWV 0 R/W 3.0V Pre-charge to fast c		7:2	VREG	S S	R/W	0001 11	3.616	0101 11	3.872	1001 11	4.128	1101 11	4.384	
0 0						0010 00	3.632	0110 00	3.888	1010 00	4.144	1110 00	4.400	
0010 11 3.680 0110 11 3.936 1010 11 4.192 1110 11 4.448 0011 00 3.696 0111 00 3.952 1011 00 4.208 1111 00 4.464 0011 01 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.480 0011 10 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.480 0011 10 3.728 0111 10 3.984 1011 10 4.24 1111 01 4.496 0011 11 3.744 0111 11 4.000 1011 11 4.256 1111 11 4.512 1 BATLOWV 0 R/W 2.8V Pre-charge to fast charge						0010 01	3.648	0110 01	3.904	1010 01	4.16	1110 01	4.416	
0011 00 3.696 0111 00 3.952 1011 00 4.208 1111 00 4.464 0011 01 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.480 0011 10 3.728 0111 10 3.984 1011 10 4.24 1111 10 4.496 0011 11 3.744 0111 11 4.000 1011 11 4.256 1111 11 4.512 1 BATLOWV 0 R/W 2.8V 2.8V Pre-charge to fast charge			C			0010 10	3.664	0110 10	3.920	1010 10	4.176	1110 10	4.432	
0011 01 3.712 0111 01 3.968 1011 01 4.224 1111 01 4.480 0011 01 3.728 0111 01 3.968 1011 01 4.224 1111 01 4.496 0011 10 3.728 0111 10 3.984 1011 10 4.24 1111 10 4.496 0011 11 3.744 0111 11 4.000 1011 11 4.256 1111 11 4.512 1 BATLOWV 0 R/W 2.8V 2.8V Pre-charge to fast charge 3.0V 3.0V 3.0V Pre-charge to fast charge Pre-charge to fast charge						0010 11	3.680	0110 11	3.936	1010 11	4.192	1110 11	4.448	
0011 10 3.728 0111 10 3.984 1011 10 4.24 1111 10 4.496 1 BATLOWV 0 R/W 2.8V 2.8V Pre-charge to fast charge 3.0V 3.0V 9.011 10 3.984 1011 10 4.24 1111 10 4.496						0011 00	3.696	0111 00	3.952	1011 00	4.208	1111 00	4.464	
0 0011 11 3.744 0111 11 4.000 1011 11 4.256 1111 11 4.512 1 BATLOWV 0 R/W 2.8V Pre-charge to fast charge 3.0V 3.0V Pre-charge to fast charge Pre-charge to fast charge		. (0011 01	3.712	0111 01	3.968	1011 01	4.224	1111 01	4.480	
1 BATLOWV 0 R/W 2.8V Pre-charge to fast charge 1 1 8.0V 3.0V Pre-charge to fast charge		X	0			0011 10	3.728	0111 10	3.984	1011 10	4.24	1111 10	4.496	
1 BATLOWV R/W Pre-charge to fast charge 1 3.0V						0011 11	3.744	0111 11	4.000	1011 11	4.256	1111 11	4.512	
1 3.0V		1		0	R/M	2.8V					Pre-cha	arge to fast ch	arde	
0 VRECHG 0 R/W 100mV Battery recharge threshold			5,1120111	1	1.5/ 9.9	3.0V							argo	
		0	VRECHG	0	R/W	100mV					Battery	recharge thre	eshold	

		1		300mV	(below battery regulation
Cha	rae Termination/	Timer Con	tral Dagiat	er REG05, Address: 05 (Default Value: 10011010, or 9A)	voltage)
Gna				Disable	
7	EN_TERM	1	R/W	Enable	Charging termination enabl
		0		Match ITERM	
6	TERM_STAT		R/W	1 – STAT pin high before actual termination	
	_	1		when charge current below 800 mA	
		00		Disable timer	
		01	-	40s	19
5:4	WATCHDOG	10	R/W	80s	- I ² C watchdog timer setting
		11	1	160s	
•		0	DAAK	Disable	
3	EN_TIMER	1	R/W	Enable	Charging safety timer settir
		00		5 hours	
0.4		01	DAA	8 hours	
2:1 CHG_TIMER	CHG_TIMER	10 10	R/W	12 hours	Fast charge timer setting
	11		20 hours		
0	Reserved	0		Reserved	
Boo	st Voltage/Therm	nal Regulat	ion Contro	ol Register REG06, Address: 06 (Default Value: 01110011	, or 0x73)
		Binary		(V)	
		0000		4.550	
		0000			-
		0001	-	4.614	-
			.0		
		0001 0010 0011	8	4.614 4.678 4.742	
		0001 0010 0011 0100	60	4.614 4.678 4.742 4.806	
		0001 0010 0011 0100 0101	100	4.614 4.678 4.742 4.806 4.870	
		0001 0010 0011 0100 0101 0110	6	4.614 4.678 4.742 4.806 4.870 4.934	Output voltage of boost
7:4	BOOSTV	0001 0010 0011 0100 0101 0110 0111	RW	4.614 4.678 4.742 4.806 4.870 4.934 4.998	Output voltage of boost
7:4	BOOSTV	0001 0010 0011 0100 0101 0110 0111 1000	R/W	4.614 4.678 4.742 4.806 4.870 4.934 4.998 5.062	-
7:4	BOOSTV	0001 0010 0011 0100 0101 0110 0111 1000 1001	R/W	4.614 4.678 4.742 4.806 4.870 4.934 4.998 5.062 5.126	-
7:4	BOOSTV	0001 0010 0011 0100 0101 0110 0111 1000 1001 1010	R/W	4.614 4.678 4.742 4.806 4.870 4.934 4.998 5.062 5.126 5.190	-
7:4	BOOSTV	0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011	R/W	4.614 4.678 4.742 4.806 4.870 4.934 4.998 5.062 5.126 5.190 5.254	-
7:4	BOOSTV	0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100	R/W	4.614 4.678 4.742 4.806 4.870 4.934 4.998 5.062 5.126 5.190 5.254 5.318	-
7:4	BOOSTV	0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011	R/W	4.614 4.678 4.742 4.806 4.870 4.934 4.998 5.062 5.126 5.190 5.254	-

		00		V _{HTF_BOOST0} (36% of REG or 55°C w/ 103AT thermistor)	Set Boost Mode hot					
	DUCT	01	5	VHTF_BOOST1 (33% of REG or 60°C w/ 103AT thermistor)	temperature monitor					
3:2	3:2 BHOT	10	R/W	V _{HTF_BOOST2} (30% of REG or 65°C w/ 103AT thermistor)	threshold voltage to disable					
		11		Disable boost mode thermal protection	boost mode					
		00		60°C						
		01		80°C	Thermal Regulation					
1:0	TREG	10	R/W	100°C	Threshold					
		11		120°C						
Oper	ation Control Re	egister REC	307, Addre	ess: 07 (Default Value: 01001011, or 4B)	19					
		0		Not in D+/D- detection	Force DPDM detection.					
7	DPDM_EN	1	R/W	Force D+/D- detection when VIN power is presence	Back to 0 after detection complete.					
		0		Safety timer not slowed by 2X during input DPM or	Safety Timer Setting during					
6	TMR2X EN	TMR2X EN	TMR2X EN	TMR2X EN	TMR2X_EN	TMR2X EN	0	R/W	thermal regulation	Input DPM and Thermal
Ũ		1	1011	Safety timer slowed by 2X during input DPM or	Regulation					
		•		thermal regulation						
5	PPFET_Disabl	0	R/W	Allow PPFET turn on						
Ũ	е	1	10/00	Turn off PPFET						
4	Reserved	0		0 – Reserved.						
3	Reserved	1	R	1 – Reserved.						
2	Reserved	0		0 – Reserved.	Force PPFET Off					
1	INT_MASK[1]	0	R/W	No INT during CHRG_FAULT						
•		1		INT on CHRG_FAULT						
0	INT_MASK[0]	0	R/W	No INT during BAT_FAULT						
Ũ		1		INT on BAT_FAULT						
Syste	em Status Regis	ter REG08	Address:	08						
		00		Unknown (no input, or DPDM detection incomplete)						
7:6	VIN_STAT	01	R	USB host						
1.0		10		Adapter port						
		11		OTG						
		00		Not Charging						
5:4	CHRG_STA	01	R	Pre-charge (<vbatlowv)< td=""><td></td></vbatlowv)<>						
v .T	Т	10		Fast Charging						
		11		Charge Termination Done						
0	DPM STAT	0	R	Not DPM						
3	3 DPM_STAT			VINDPM or ILIMDPM						

2	PG_STAT	0	R	Not Power Good				
		1		Power Good				
1	THERM_ST	0	R	Normal				
AT	1	ĸ	In Thermal Regulation					
0 VSYS_STAT	Veve etat	0	R	Not in VSYSMIN regulation (BAT>VSYSMIN)				
0	V315_51A1	1		In VSYSMIN regulation (BAT <vsysmin)< td=""><td></td></vsysmin)<>				
Fault	Register REG)9, Address	: 09					
7	WATCHDO	0	R	Normal	0			
1	G_FAULT	1	ĸ	Watchdog timer expiration				
	OTG_FAUL	0		Normal				
6	T	1	R	VIN overloaded in OTG, or VBUS OVP, or battery is too	$\mathbf{\nabla}$			
	·	1		low (any conditions that cannot start boost function)	-			
		00		Normal				
5:4	CHRG_FAU	01	R	Input fault (VIN OVP or Bad source)				
5.4	LT	10		Thermal shutdown	-			
		11		Charge Safety Timer Expiration				
3	BAT_FAULT	0	R	Normal	Fault status			
5 BAT_FAULT	1		BATOVP	-				
2	Reserved	0	R	Reserved				
Z	Reserved	1						
	NTC_FAULT	0		Normal	-			
1	[1]	R	R	Cold, Note: Cold temperature threshold is different based				
	[']			on device operates in buck or boost mode				
	NTC_FAULT	0	. 0	Normal				
0	[0]	1	R	Hot, Note: Hot temperature threshold is different based on				
	[0]	Ċ		device operates in buck or boost mode				
Vend	er Info Registe	r REG0A, A	ddress: 0/	A				
7:5	PN	001	R	001 –HL7026				
4:3	Reserved	00	R	Reserved				
2:0	Reserved	000	R	Reserved				
Ship	oing Mode Reg	ister REG0E	3, Address	:: 0B				
7:3	Reserved	00000	R	Reserved				
X	5	000		100ms				
		001		9.1s	Shipping mode activation			
2:0	TSHIP	010	R/W	18.1s	delay			
		011		27.1s				
		100		36.1s				

		101		45.1s			
		110		54.1s			
		111		63.1s			
IR Co	ompensation / E	Boost Contr	ol Registe	r REG0C, Address: 0C (Default Value: 00000000, or 00)			
		000		0mΩ			
		001		10mΩ			
		010		20mΩ	O		
7.5		011	DAA	30mΩ	IR Compensation Resister		
7:5	BAT_COMP	100	R/W	40mΩ	Setting		
		101		50mΩ			
		110	1	60mΩ			
		111	1	70mΩ			
	000		0mV				
		001	-	16mV			
		010		32mV	IR Compensation Voltage		
	BAT_VCLA	011	5.44	48mV			
4:2	MP	100	R/W	64mV	Clamp (above regulation		
		101		80mV	voltage)		
		110		96mV			
		111		112mV			
1	Reserved	0	R	Reserved			
_	BOOST_9V_	0		Disable 9V boost			
0	EN	1	R/W	Enable 9V boost			
Misc	Operation Reg	ister Contro	I REGOD,	Address:0D(default Value: 00010000, or 10)			
7	Reserved	0	R	Reserved			
0	DISABLE_T	0	DAAL	TS1/TS2 functions enabled			
6	S	1	R/W	Disable TS1/TS2 detection			
-	VINDPM_OF	0	DAA	VINDPM thresholds are defined as REG00[6:3]			
5	FSET	1	R/W	VINDPM threshold defined in REG00[6:3] multiplied by 2.5			
4:0	Reserved	00000	R	Reserved			

Application Information

Input Capacitor

Input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the worst case capacitor RMS current I_{CIN} occurs where the duty cycle is closest to 50% and can be estimated by the following equation:

$$I_{CIN} = I_{CHG} \times \sqrt{D \times (1 - D)} \tag{4}$$

For best performance, VIN should be decoupled to PGND with at least 1μ F effective capacitance. The remaining input capacitor should be place on VPRT. Also consider the voltage coefficients of the capacitor, which may reduce the effective capacitance from its rated value.

Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be placed to the drain of the high side MOSFET and source of the low side MOSFET as close as possible. Voltage rating of the capacitor must be higher than normal input voltage level. 25V rating or higher capacitor is preferred because VIN can be as high as 20V during transients of the plug-in process, and any in-rush situation that may exist when external DC source has large AC components.

Output Capacitor

Output capacitor also should have enough ripple current rating to absorb output switching ripple current. The output capacitor RMS current ICOUT is given:

$$I_{COUT} = \frac{I_{RIPPLE}}{2 \times \sqrt{3}} \approx 0.29 \times I_{RIPPLE}$$
(5)

The output capacitor voltage ripple can be calculated as follows:

$$\Delta V_{O} = \frac{V_{OUT}}{8LC F_{SW}^{2}} \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
(6)

HL702

At certain input/output voltage and switching frequency, the voltage ripple can be reduced by increasing the output filter LC.

The charger device has internal loop compensation. To get good loop stability, The desired output capacitor range is 10uF to 20uF.

Output Inductor Selection

The HL7026 has 1.5 MHz switching frequency to allow the use of small 1uH inductor. The Inductor saturation current should be higher than the charging current (I_{CHG} , 3A) plus half the ripple current (I_{RIPPLE}):

$$I_{SAT} \ge I_{CHG} + (1/2)I_{RIPPLE}$$
⁽⁷⁾

The inductor ripple current depends on input voltage (V_{VIN}) , duty cycle (D = V_{BAT}/V_{VIN}), switching frequency (Fsw) and inductance (L):

$$I_{RIPPLE} = \frac{V_{\text{VIN}} \times D \times (1 - D)}{F_{\text{SW}} \times L}$$
(8)

The maximum inductor ripple current happens with D = 0.5 or close to 0.5. Usually inductor ripple is designed in the range of (20–40%) maximum charging current as a trade-off between inductor size and efficiency for a practical design. Typical inductor value is 1µH.

PCB Layout Reference

The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the components to minimize high frequency current path loop (see Figure 31) is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Here is a PCB layout priority list for proper layout. Layout PCB according to this specific order is essential.

1. Place input capacitor as close as possible to VPRT pin and PGND pin connections and use shortest copper trace connection or PGND plane.

2. Place inductor input terminal to SW pin as close as possible. Minimize the copper area of this trace to lower electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other trace or plane.

3. Put output capacitor near to the inductor and the IC. Ground connections need to be tied to the IC ground with a short copper trace connection or GND plane.

4. Route analog ground separately from power ground. Connect analog ground and connect power ground separately. Connect analog ground and power ground together using power pad as the single ground connection point. Or use a 0Ω resistor to tie analog ground to power ground.

5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the IC. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.

6. Decoupling capacitors should be placed next to the IC pins and make trace connection as short as possible.

7. It is critical that the exposed power pad on the backside of the IC package be soldered to the PCB ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on the other layers.

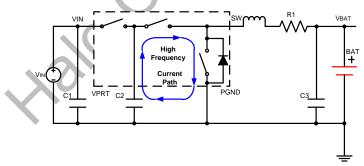
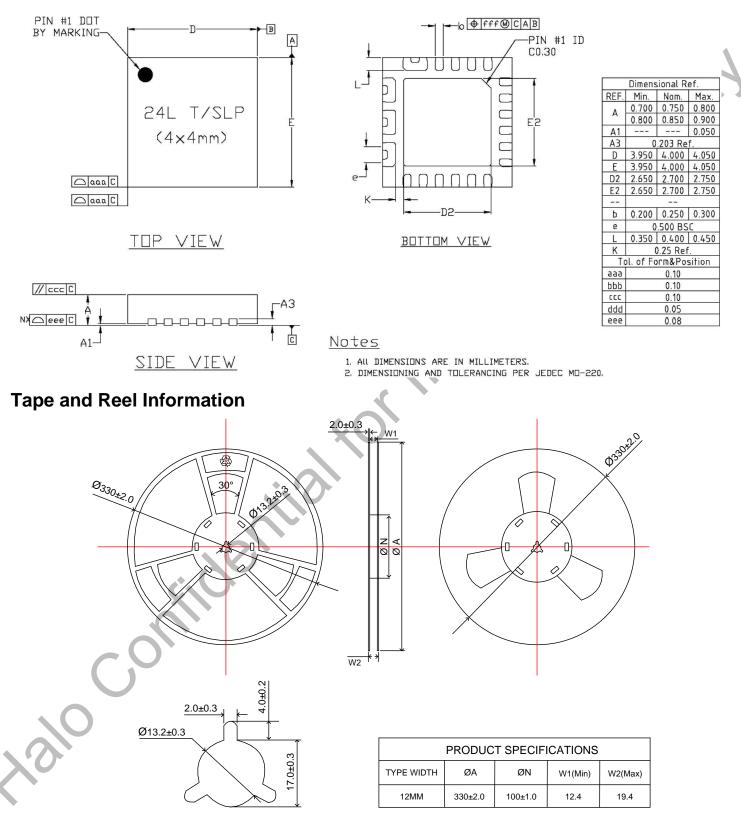
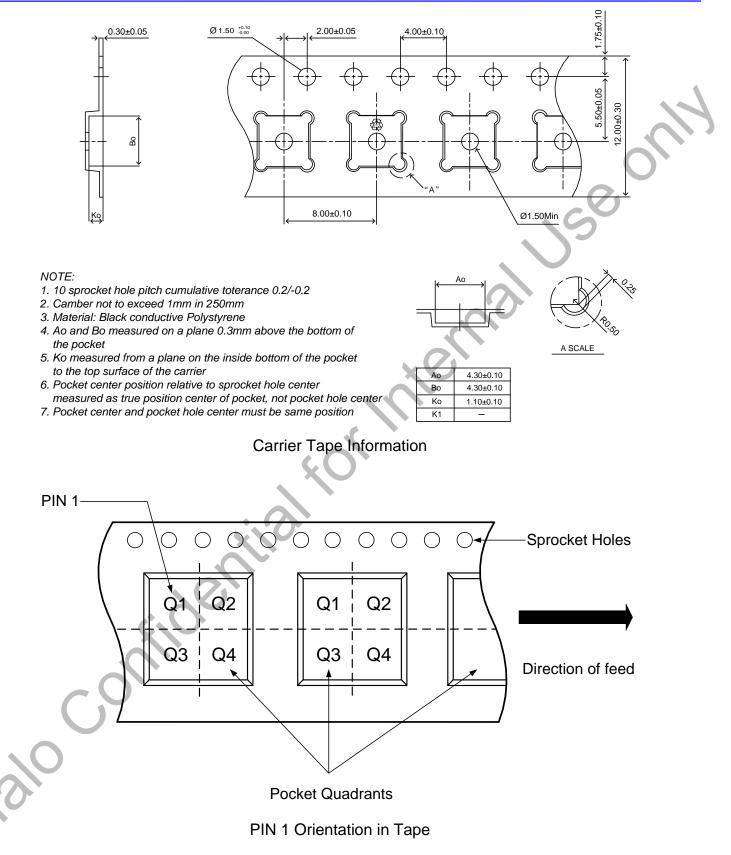


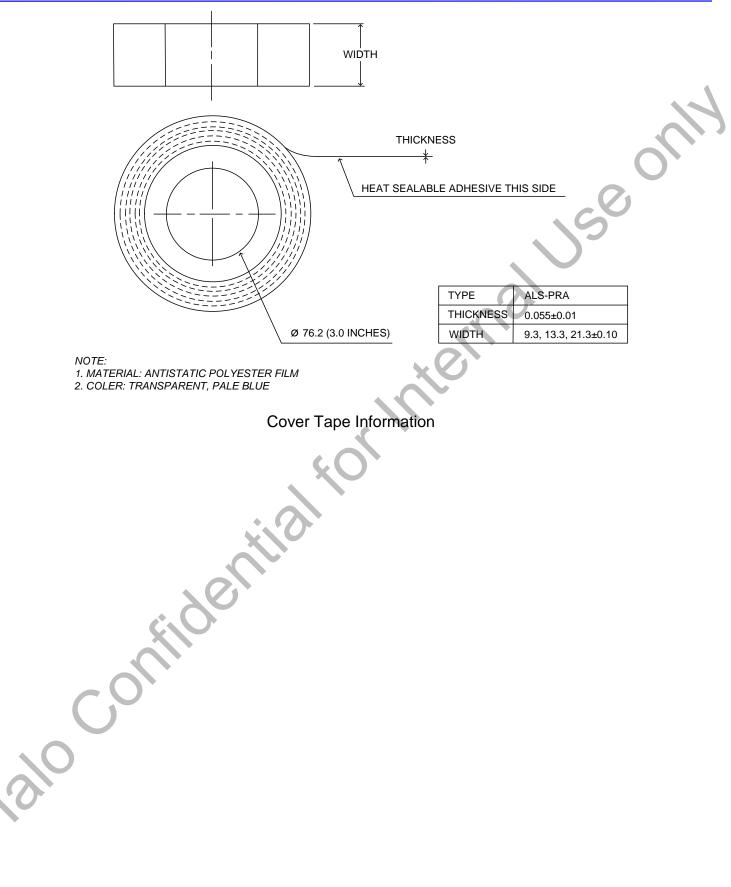
Figure 31 High Frequency Current Path


HL7026

ternaluse



Package Information



Reel Information

Important Notice

Halo Micro reserves the right to modify, improve and terminate its products, service, documentation, etc. without advance notice. Customers are encouraged to contact Halo Micro sales representative get the latest product information.

Without proper legal authorization, Halo Micro products shall not be used for medical or military applications. Halo Micro does not assume any liability of personal or property damages of any kind due to such applications.

All text, images, trademarks of this document, and any intellectual property contained in the product and in this document belong to Halo Micro No part of this document may be used, copied, modified, distributed or published without legal authorization from Halo Micro.

405

rert

ontidential